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 Abstract – This paper presents a novel approach to 
accessibility analysis for manipulative robotic tasks. The 
workspace is captured using a stereo camera, and 
heterogeneously modeled with the recognized plane features, 
recognized objects with complete solid models, and 
unrecognized 3D point clouds organized with a multi-
resolution octree. When the service robot is requested to 
manipulate a recognized object, the local accessibility 
information for the object is retrieved from the object 
database. Then, accessibility analysis is done to verify the 
object accessibility and determine the global accessibility. The 
verification process utilizes the visibility query, which is 
accelerated by graphics hardware. The experimental results 
show the feasibility of real-time and behavior-oriented 3D 
modeling of workspace for robotic manipulative tasks, and also 
the performance gain of the hardware-accelerated accessibility 
analysis obtained using the commodity graphics card. 
 
 
 Index Terms –accessibility analysis, visibility, 3D workspace 
modeling, robotic manipulation 
 

I. INTRODUCTION 

Accessibility analysis refers to a spatial reasoning activity 
that seeks to determine the directions along which a tool can 
access a target object. The traditional application fields 
include automatic inspection with coordinate measuring 
machines (CMMs) [1][2], tool path planning for assembly 
[3], sensor placement for computer vision [4], numerically 
controlled (NC) machining [5], etc. In recent years, the field 
of service robots is getting more attention and the real-time 
accessibility analysis for grasping and delivering objects 
becomes an important issue.  
 This paper describes a novel approach for real-time 
accessibility analysis for manipulative robotic tasks using 
hardware graphics. The paper presents local and global 
accessibility analysis of a given object in realistic 
environments. 

II. RELATED WORK 

Since most of the work in accessibility has been done in the 
inspection field, in the following we review a few related 
studies in this area. 
  Spyridi and Requicha [12] were the first to incorporate 
a systematic accessibility analysis for inspected features. 
They use a computationally intensive method to determine 
if a point is accessible locally first and then globally 
considering the entire work piece.  
  An accessibility analysis approach, for an infinite length 
probe, based on a ray tracing algorithm was proposed by 

Lim and Menq [13]. They determine a discrete 3-D 
accessibility cone which is transformed into a 2-D map in 
which only the orientation of the probe is expressed by two 
angles in a spherical coordinate system. A heuristic is used 
to determine the optimal probe direction for a set of 
inspected points.  
  Limeiam and ElMaraghy [11] address accessibility 
analysis of any point in the 3-D space using the elementary 
solid modeling operations: intersection, translation and 
scaling. This method uses CPU time to determine an 
accessible point, or an accessible surface using an extended 
version of this method.  
  In the studies centered on inspection, it is assumed that 
the environment is open for a probe’s motion and only the 
work piece itself may collide with the probe. Moreover, all 
these methods propose algorithms that run mostly off-line to 
determine the accessibility.  However, in real-time 
manipulation, a fast accessibility of the grasp points on an 
object is needed. This paper proposes accessibility analysis 
based on visibility test, which has been a fundamental 
problem in computer graphics since the very beginning of 
the field. Among the visibility issues, the focus was 
dominantly on hidden surface removal*. The problem has 
been mostly solved, and the z-buffer [6] technique 
dominates for interactive applications. In addition to the z-
buffer, current commodity graphics hardware supports an 
image-space visibility query that checks whether a primitive 
is visible or not. This paper reports an accessibility analysis 
based on the hardware-accelerated visibility query, and its 
application to manipulative robotic tasks.  

This paper reviews 3D workspace modelling in Section 
III. The accessibility analysis is presented in Sections IV, V 
and VI. Extensions and discussions are presented in section 
VII. Section VIII includes the experimental results. Finally, 
Section IX concludes the paper.  

III. 3D WORLD MODELING 

Environment modeling is crucial for autonomous mobile 
robots, especially for intelligent service robots that perform 
versatile tasks in everyday human life. In this study, we rely 
on the real-time 3D workspace modeling for robotic 
manipulation using a stereo camera [8], mounted on the 
robot arm with an eye-on-hand configuration (Fig. 1(a)). In 
this section we review the 3D modeling process briefly. 

                                                           
* Visibility algorithms have recently regained attention because the ever 
increasing size of 3D datasets makes them impossible to display in real time 
with classical approaches. For a survey, readers are referred to [7] 
 



  It is assumed that the workspace is textured enough so 
that the captured range data contains a plenty of 3D points. 
The range data in the form of 3D point cloud including 2D 
reference image is acquired from the stereo camera on the 
fly, as shown in Fig. 1(b).  
 In the 3D modeling process, first the global planar 
features are extracted. To ensure a fast and robust 
processing, combined use of the SIFT (scale-invariant 
feature transform) features [9] [10] with the 3D information 
(stereo-sis SIFT). In the well-textured environment, a 
meaningful bunch of the SIFT features can be extracted.  

All objects to be manipulated (called target objects) 
have complete solid model representations in the object 
database. In addition, the database is rich enough to contain 
the SIFT features and graspability or object accessibility 
(which will be discussed in Section IV) information of each 
object.  
 In the second step, the target objects are registered into 
the scene by matching the SIFT features, and then the 3D 
point cloud belonging to the target object is discarded, i.e. 
the point cloud is replaced by the solid model. Fig. 2(a) 
shows an example of the registered objects in which the 
extracted planes are also displayed.  
 The point clouds which are not comprised in the 
extracted planes and also not recognized as target objects 
are taken as obstacles which should be avoided in 
manipulating the target object. The obstacles are 
hierarchically represented in a multi-resolution octree. 
Coarse representations are given to the obstacles which are 
relatively far away from the target object. In contrast, fine 
representations are given to the closer obstacles. Such multi-
resolution modeling enables efficient collision detection and 
motion planning. Fig. 2(b) shows the multi-resolution octree 
representation of the obstacles. Coarse representations lead 
to bigger octants (cells of the octree) behind the cereal box, 
and fine representations lead to smaller octants in front of 
the box.  

IV. GRASPABILITY 

 Regardless of the environment in which an object is 
placed, the object can be stably grasped and manipulated at 
certain areas of the whole object body.  These graspable 
points can be determined based on the object’s weight, 
dimensions and material as well as the robot’s gripper 
characteristics. As discussed in the previous section, all 
target objects have complete solid models in the database, 
and the database contains graspability or object accessibility 
information of each object. Fig. 3 shows the graspability 
representation for a cereal box. With a robot arm of a small 
gripper, it is reasonable to define 4 access directions: ±x and 
±y with respect to the local coordinates of the cereal box. 
Fig. 3(a) shows –x and –y object accessibility directions. 
 To grasp an object, an access direction should be 
determined first. For an access direction, there can be 
infinitely many contact points. As illustrated in Fig. 3(b), a 
contact point is defined as the intersection between the 
object surface and the gripper axis when the gripper moves 
toward the object along the access direction. Such infinitely 
many contact points can be represented as a line with two 
end points. For an arbitrarily-shaped object, however, the 
line should be generalized into a curve, and the curve may 
be 3D. Therefore, we call the collection of the contact points 
a contact curve. Object accessibility is then represented as 
‘access direction + contact curve.’  
 Given a contact point on the contact curve, the 
orientation of the gripper is determined. As illustrated in 
Fig. 3(b), the gripper should be aligned with the normal 
vector of the contact curve at the contact point. The access 
direction and the normal vector fix the initial orientation of 
the gripper. Together with the initial position, it defines the 
initial pose of the gripper. Then, the gripper simply 
translates towards the contact point with the fixed 
orientation, as will be discussed in the next section. 
 In the example of Fig. 3, four instances (±x and ±y) of 
object accessibility are stored in the database, and priorities 
are given based on the intuitive human graspability 
preferences. It is also possible to have a set of pre-
determined priorities and change the weights on the fly 
considering the environment. For instance, how much the 
gripper jaw gets in contact with the object can be used as a 
quality measure for accessibility direction and can change 
the priority weights (Section VII-A). 
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Fig. 1. a) An experimental environment, b) the captured range data       
(a)        (b) 

 
Fig. 3. a) Sample access directions for an object, b) a set of 
graspability points and an object accessibility direction. 
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Fig. 2. a) Integration of the target object’s solid model into the 
workspace, b) multi-resolution octree representation of obstacles. 



V. OBJECT VISIBILITY 

Given object graspability, it should be verified by 
considering the global environment. When verified, it is 
called global accessibility. As the object accessibility is 
encoded as ‘access direction + contact curve’ and priorities 
are given to the instances, the algorithm starts with the 
highest accessibility direction and then tested for global 
accessibility. If the test succeeds, a contact point is returned, 
the robot arm moves toward the contact point, and grasps 
the object. If the test fails, the object accessibility instance 
with the next-priority is selected, and the same process is 
repeated. 
 The global accessibility is verified through visibility, 
which is classified into object visibility and gripper 
visibility. In order for an object to be retrieved, the object 
should be fully visible. The visibility test is done using 
hardware visibility query supported by contemporary 
graphics hardware, which scan-converts the object and 
checks if the depth of any pixel is changed. The visibility 
query returns the number of fragments (pixels) that have 
passed the depth test. We have implemented the hardware 
visibility query using DirectX 9.0 IDirect3DQuery9 
interface. When the query type 
D3DQUERYTYPE_OCCLUSION is given to 
IDirect3DQuery9, the number of pixels visible on the screen 
is returned. As it is done in hardware, the query is executed 
extremely fast. 
 Two types of projection are supported by graphics 
hardware: orthographic and perspective. We use the 
orthographic projection in which the viewing direction is set 
to one of the object’s access direction starting with the 
access direction with the highest priority. For instance, let’s 
assume the priority for the cereal box is set to ±x over ±y, 
for the object in Fig. 3.  
 The surrounding environment of the cereal box is 
shown in Fig. 4(a). Let us discuss the visibility test with the 
access/viewing direction of –x.  

First, the surrounding environment which include 
octrees, planes, and recognized objects except target object 
are rendered, as illustrated in Fig. 4(b). Second, the depth-
test condition is set to 'greater-than' so as to make only the 
farther (not nearer) pixels can pass the depth-test, and then 
the visibility query is issued with the target object. Finally, 
we render the target object. If the target object passes the 
depth test, then the visibility query returns the number of 
rendered pixel. If the object is fully visible, returned number 
of visibility test is zero.  
 For the depth test with the target object, we need to 
consider only the back faces. We can draw the back faces of 
object to control the culling mode using DirectX 
SetRenderState interface. More specifically, we invoke 
SetRenderState (D3DRS_CULLMODE, D3DCULL_CW). 
Then, the front faces are culled, and only the back faces are 
rendered. Fig. 4(c) shows the back faces of the cereal box, 
and Fig. 4(d) is the rendered back face of the target object 
by using back face culling. As it shown in the figure, several 
pixels of target object’s back faces are rendered, and so the 
target object is determined to be not retrievable along –x. 
 Partially invisible objects can also be grasped and 
moved, but it requires motion planing. Currently, motion 
planning is simplified and every object is assumed to be 
moved along the opposite of the access direction. In other 
words, we assume that the robot will grasp the object at the 
given point and move it along a line determined by the 
accessibility direction (a normal to the grasp point on the 
robots surface).   
 In Fig. 4, we have shown that the cereal box is not 
retrievable along –x. The same geometric reasoning along 
the access direction x shows that the box is not retrievable 
either. Then, the next-priority access directions, i.e. ±y, are 
investigated. Due to the presence of the plane feature, the 
access direction y is immediately rejected. Fig. 5 shows the 
three steps of the object visibility test along –y.  
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Fig. 4. Object visibility test along –x: a) The target object in the 3D 
model, b) the rendered environment, c) back face of the target object, 
d) rendered environment including the target object. 
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Fig. 5. Object visibility test along –y: a) The target object in the 3D 
model, b) the rendered environment from top, c) top of the object, d) 
rendered environment including the target object from above. 



 First, we render the environment. Fig. 5(b) illustrates 
the environment looking down along –y direction. Then the 
visibility test is performed using the back faces of the object 
as shown in Fig. 5(c). In this case, there is no pixel to pass 
the depth test. Therefore the cereal box is determined to be 
fully visible. Fig. 5(d) shows the cereal box does not collide 
with obstacles. 

VI. GRIPPER VISIBILITY 

Object visibility is just the necessary condition for object 
manipulation. The sufficient condition is that the gripper 
should be able to access the object and grasp it. If the 
gripper can translate towards the target object without 
colliding with the other primitives in the scene to obtain the 
configuration in Fig. 6(a), where the gripper contacts the 
target object, the object is determined to be globally 
accessible.  
 In principle, the global accessibility test requires the 
swept volume of the gripper to be tested for collision with 
the scene primitives. The swept volume is generated by 
linearly connecting the gripper of the initial pose and that of 
the final pose, as illustrated in Fig. 6(a). Sweeping and 
collision detection are not cheap operations. Fortunately, 
they can be replaced by gripper visibility test. 
 Given the viewing direction (access direction of the 
local accessibility instance) of the orthographic projection, 
the boundary faces of the gripper are classified into front 
and back faces. We need to consider only the back faces, 
shaded in Fig. 7(c). If the back faces (at the final pose) are 
all visible along the access direction, it is concluded that the 
sweeping gripper does not collide with the scene primitives.  
 The gripper’s visibility test goes through the process 
similar to that of object visibility test. First, the surrounding 
environment is rendered. Second, the condition of depth test 
is set, and finally the back face of gripper is rendered using 
visibility query. The gripper is fully visible, the sweeping 
gripper does not collide with the scene primitives, and 
consequently the target object is determined to be globally 
accessible. Fig. 7(d) shows gripper final pose with 
environment. The gripper is fully visible. 
 Recall that there are (almost always) infinitely many 
contact points † . Note that the gripper visibility can be 
verified for some contact points while it may not be for 
others. Fig. 8 shows an example. We then have to be able to 
                                                           
† Some objects may have a single contact point. A good example is a cola 
can when the access direction is equal to the can axis. 

decide if the gripper-visible contact points exist, and to 
select the best/optimal one among them, if any. For the 
purpose, the contact curve is sampled.  
 The sampled points are given priorities. It can be either 
computed on the fly or pre-determined and stored in the 
database. Currently, it is computed on the fly: The points at 
the center of the contact curve are given the higher 
priorities. Starting from the highest-priority sampled point, 
the gripper visibility test is performed. If verified, the 
contact point is determined. Otherwise, the nest-priority 
sampled point is tested. If all sampled points are rejected, 
the object is determined to be not accessible. 
 

 
 

Fig. 8.Visible and invisible points 
 

VII. EXTENSIONS AND DISCUSSIONS 

A. Quality of an Accessibility Direction 
 Among all accessible directions that passed the 
visibility test, the motion planning module needs to select 
one. Consequently a priority or quality assigned to an 
accessible direction would be desirable to help selecting an 
accessible direction. The priorities can be either defined off-
line and stored in the object database or determined on-line 
considering both off-line and real-time priorities/qualities.  
 A simple and intuitive quality measure is based on the 
gripper-object overlap in which the more the gripper and the 
object overlap, the higher the friction, the better the grasp. 
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Fig. 6. Gripper visibility test using back faces 
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Fig. 7. Gripper visibility test along -y 



  

 
Fig. 9. Gripper-object overlap depends on the obstacles around the object. 

 
 The gripper-object overlap relies on measuring the 
maximum overlap between the gripper jaws and object 
before hitting an obstacle. Figure 9 shows two accessible 
directions in which one has 50% gripper-object overlap and 
the other has only 15% overlap.  

The gripper-object overlap is also determined using the 
visibility test. Basically if the gripper cannot reach the 
contact point completely, then the visibility test is applied in 
fixed length considering the gripper with some offset from 
the contact point on the object.  

B. Local Accessibility vs. Global Accessibility 
 As mentioned earlier, it is assumed that the object 
would be grasped and removed along the accessibility 
direction. In other words, there should be no object along 
the given direction and the robot does not have any limit 
manipulating the object along the accessibility direction. 
However, in real environment, an object may need to be 
grasped at the given grasped point, lifted and moved along 
another direction due to manipulator’s limits or obstacles in 
the environment. This means that the local accessibility, a 
limited area around the target object, needs to be tested 
rather than the global accessibility. The limited area around 
the target object is represented by a sphere located at the 
center of the object with a given locality radius (Fig. 10). 
The locality radius can be as small as the length of the 
gripper plus half of the object’s width. Figure 10 shows the 
minimum locality radius with which a gripper can slide in 
and grasp the target object. The red blocks show the 
obstacles that have been rendered and considered in the 
accessibility analysis. In contrast, the orange blocks are the 
obstacles that are outside the locality sphere and have not 
been considered in the accessibility analysis. 
 The proposed method has been modified to determine 
the accessibility given the locality radius of local 
accessibility around the target object. The modified version 
allows the test for both local and global accessibility by 
changing the locality radius.  

C. Far vs. Near Objects 
 When a service robot is far away from a target object, it 
is not important to know all accessible directions for each 
contact curve. Rather it is important to know if a contact 
curve is accessible in one of the sample points. However, 
when the robot gets closer and needs to manipulate the 
object, then it needs to know all possible accessible 
directions to efficiently determine the path and perform the 
task. Consequently, when the robot is far away from an 
object, the accessibility analysis on each contact curve 

would return as soon as one sample point is acceptable. This 
shows that the contact curve under study can be accessed at 
least at one sample point.  
 On the average, the accessibility analysis for faraway 
objects can be 50% faster than near objects, considering the 
above method. A heuristic, to further improve the 
accessibility analysis for faraway objects, is to start from top 
of the contact curve. It would reduce the analysis time up to 
90% because the objects are normally sitting on a flat 
surface and they are accessible from the top.   

VIII. EXPERIMENTAL RESULTS 

The above method was implemented considering the 
following scenario: a service robot is requested to grasp a 
pre-selected object. Then the robot captures images from the 
environment, makes the 3D model, recognizes the object, 
determines the accessibility directions, does motion 
planning based on a feasible accessible direction, and moves 
the manipulator to grasp it (Fig. 11). 
 

 
 

Fig. 11: Object manipulation flowchart 
 
 
 The algorithms were implemented on a modest PC 
(Pentium 4 2.8 GHz, and NVIDIA Geforce 6600GT 
graphics card) and many experiments have been conducted. 
Table I shows the measured results of system performance 
for a sample environment. The accessibility test has been 
performed on a 60x60cm2 area with 0.05cm accuracy. It 
should be mentioned that the number of objects in the 
database does not affect the process of registering a pre-
selected object. However, if all the objects in the database 

Fig. 10. Local accessibility based on the locality radius. 

Locality radius 

Gripper 



are required to be registered in the environment, then the 
object recognition time will increase linearly based on the 
number of objects in the database. 
 

 
TABLE I 

MEASUREMENT OF SYSTEM PERFORMANCE 
 Average time (ms) 

SIFT feature calculation 188 
Plane extraction 19 

Object recognition  
(3 object models) 350 

Multi-resolution octree 
construction 60 

Accessibility test  
without quality measuring 13 

Accessibility test  
with quality measuring 20 

 
Currently the manipulation is done using the 3D world 

model which is not supposed to be updated. The 
experiments have shown that the smaller the object, the 
harder to accurately determine the pose of the object. 
Consequently, a continuous 3D modeling is under 
investigation to improve the accuracy of the 3D model 
progressively.  

Fig. 12 shows a sample manipulation task in which the 
robot is requested to grasp a Sunkist container inside a 
refrigerator. As can be seen from the pictures, the 3D model 
only includes a small part of the refrigerator and does not 
model the whole refrigerator due to the small camera view 
angle.  

IX. CONCLUSION 

This paper presents a novel approach to accessibility 
analysis for manipulative robotic tasks: visibility-based 
geometric reasoning. The accessibility analysis process 
utilizes the visibility query, which is accelerated by graphics 
hardware. The performance and robustness of the proposed 
approach are evaluated in cluttered indoor environments 
experimentally. The experimental results demonstrated that 
the proposed methods are fast and robust enough to 
manipulate 3D objects for real-time robotic application. 
Currently, the arm follows a predefined path, but it is to be 
planned. Moreover, the minimum clearance needed for a 
robot gripper to access a grasp point should be determined. 
Therefore, future research plan includes the integration with 
motion planner and grasp analysis. 
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Fig. 12. a) Robot’s manipulator is positioned to capture the scene, b) 
the scene from camera point of view, c) the 3D modeled environment 
represented in the simulation showing the target object in blue and the 
obstacles in red (octree cells), d) the robot has grasped the object after 
accessibility analysis. 


