
A Visibility-based Accessibility Analysis of the Grasp
Points for Real-time Manipulation

Han-Young Jang1, Hadi Moradi2, Sukhan Lee2, JungHyun Han1
1Department of Computer Science and Engineering 2School of Information and Communications Engineering

Korea University Sungkyunkwan University
Sungbuk-ku, Seoul, Korea Jangan-ku, Suwon, Korea

 Abstract – This paper presents a novel approach to
accessibility analysis for manipulative robotic tasks. The
workspace is captured using a stereo camera, and
heterogeneously modeled with the recognized plane features,
recognized objects with complete solid models, and
unrecognized 3D point clouds organized with a multi-
resolution octree. When the service robot is requested to
manipulate a recognized object, the local accessibility
information for the object is retrieved from the object
database. Then, accessibility analysis is done to verify the
object accessibility and determine the global accessibility. The
verification process utilizes the visibility query, which is
accelerated by graphics hardware. The experimental results
show the feasibility of real-time and behavior-oriented 3D
modeling of workspace for robotic manipulative tasks, and also
the performance gain of the hardware-accelerated accessibility
analysis obtained using the commodity graphics card.

 Index Terms –accessibility analysis, visibility, 3D workspace
modeling, robotic manipulation

I. INTRODUCTION

Accessibility analysis refers to a spatial reasoning activity
that seeks to determine the directions along which a tool can
access a target object. The traditional application fields
include automatic inspection with coordinate measuring
machines (CMMs) [1][2], tool path planning for assembly
[3], sensor placement for computer vision [4], numerically
controlled (NC) machining [5], etc. In recent years, the field
of service robots is getting more attention and the real-time
accessibility analysis for grasping and delivering objects
becomes an important issue.
 This paper describes a novel approach for real-time
accessibility analysis for manipulative robotic tasks using
hardware graphics. The paper presents local and global
accessibility analysis of a given object in realistic
environments.

II. RELATED WORK

Since most of the work in accessibility has been done in the
inspection field, in the following we review a few related
studies in this area.
 Spyridi and Requicha [12] were the first to incorporate
a systematic accessibility analysis for inspected features.
They use a computationally intensive method to determine
if a point is accessible locally first and then globally
considering the entire work piece.
 An accessibility analysis approach, for an infinite length
probe, based on a ray tracing algorithm was proposed by

Lim and Menq [13]. They determine a discrete 3-D
accessibility cone which is transformed into a 2-D map in
which only the orientation of the probe is expressed by two
angles in a spherical coordinate system. A heuristic is used
to determine the optimal probe direction for a set of
inspected points.
 Limeiam and ElMaraghy [11] address accessibility
analysis of any point in the 3-D space using the elementary
solid modeling operations: intersection, translation and
scaling. This method uses CPU time to determine an
accessible point, or an accessible surface using an extended
version of this method.
 In the studies centered on inspection, it is assumed that
the environment is open for a probe’s motion and only the
work piece itself may collide with the probe. Moreover, all
these methods propose algorithms that run mostly off-line to
determine the accessibility. However, in real-time
manipulation, a fast accessibility of the grasp points on an
object is needed. This paper proposes accessibility analysis
based on visibility test, which has been a fundamental
problem in computer graphics since the very beginning of
the field. Among the visibility issues, the focus was
dominantly on hidden surface removal*. The problem has
been mostly solved, and the z-buffer [6] technique
dominates for interactive applications. In addition to the z-
buffer, current commodity graphics hardware supports an
image-space visibility query that checks whether a primitive
is visible or not. This paper reports an accessibility analysis
based on the hardware-accelerated visibility query, and its
application to manipulative robotic tasks.

This paper reviews 3D workspace modelling in Section
III. The accessibility analysis is presented in Sections IV, V
and VI. Extensions and discussions are presented in section
VII. Section VIII includes the experimental results. Finally,
Section IX concludes the paper.

III. 3D WORLD MODELING

Environment modeling is crucial for autonomous mobile
robots, especially for intelligent service robots that perform
versatile tasks in everyday human life. In this study, we rely
on the real-time 3D workspace modeling for robotic
manipulation using a stereo camera [8], mounted on the
robot arm with an eye-on-hand configuration (Fig. 1(a)). In
this section we review the 3D modeling process briefly.

* Visibility algorithms have recently regained attention because the ever
increasing size of 3D datasets makes them impossible to display in real time
with classical approaches. For a survey, readers are referred to [7]

 It is assumed that the workspace is textured enough so
that the captured range data contains a plenty of 3D points.
The range data in the form of 3D point cloud including 2D
reference image is acquired from the stereo camera on the
fly, as shown in Fig. 1(b).
 In the 3D modeling process, first the global planar
features are extracted. To ensure a fast and robust
processing, combined use of the SIFT (scale-invariant
feature transform) features [9] [10] with the 3D information
(stereo-sis SIFT). In the well-textured environment, a
meaningful bunch of the SIFT features can be extracted.

All objects to be manipulated (called target objects)
have complete solid model representations in the object
database. In addition, the database is rich enough to contain
the SIFT features and graspability or object accessibility
(which will be discussed in Section IV) information of each
object.
 In the second step, the target objects are registered into
the scene by matching the SIFT features, and then the 3D
point cloud belonging to the target object is discarded, i.e.
the point cloud is replaced by the solid model. Fig. 2(a)
shows an example of the registered objects in which the
extracted planes are also displayed.
 The point clouds which are not comprised in the
extracted planes and also not recognized as target objects
are taken as obstacles which should be avoided in
manipulating the target object. The obstacles are
hierarchically represented in a multi-resolution octree.
Coarse representations are given to the obstacles which are
relatively far away from the target object. In contrast, fine
representations are given to the closer obstacles. Such multi-
resolution modeling enables efficient collision detection and
motion planning. Fig. 2(b) shows the multi-resolution octree
representation of the obstacles. Coarse representations lead
to bigger octants (cells of the octree) behind the cereal box,
and fine representations lead to smaller octants in front of
the box.

IV. GRASPABILITY

 Regardless of the environment in which an object is
placed, the object can be stably grasped and manipulated at
certain areas of the whole object body. These graspable
points can be determined based on the object’s weight,
dimensions and material as well as the robot’s gripper
characteristics. As discussed in the previous section, all
target objects have complete solid models in the database,
and the database contains graspability or object accessibility
information of each object. Fig. 3 shows the graspability
representation for a cereal box. With a robot arm of a small
gripper, it is reasonable to define 4 access directions: ±x and
±y with respect to the local coordinates of the cereal box.
Fig. 3(a) shows –x and –y object accessibility directions.
 To grasp an object, an access direction should be
determined first. For an access direction, there can be
infinitely many contact points. As illustrated in Fig. 3(b), a
contact point is defined as the intersection between the
object surface and the gripper axis when the gripper moves
toward the object along the access direction. Such infinitely
many contact points can be represented as a line with two
end points. For an arbitrarily-shaped object, however, the
line should be generalized into a curve, and the curve may
be 3D. Therefore, we call the collection of the contact points
a contact curve. Object accessibility is then represented as
‘access direction + contact curve.’
 Given a contact point on the contact curve, the
orientation of the gripper is determined. As illustrated in
Fig. 3(b), the gripper should be aligned with the normal
vector of the contact curve at the contact point. The access
direction and the normal vector fix the initial orientation of
the gripper. Together with the initial position, it defines the
initial pose of the gripper. Then, the gripper simply
translates towards the contact point with the fixed
orientation, as will be discussed in the next section.
 In the example of Fig. 3, four instances (±x and ±y) of
object accessibility are stored in the database, and priorities
are given based on the intuitive human graspability
preferences. It is also possible to have a set of pre-
determined priorities and change the weights on the fly
considering the environment. For instance, how much the
gripper jaw gets in contact with the object can be used as a
quality measure for accessibility direction and can change
the priority weights (Section VII-A).

(a) (b)

Fig. 1. a) An experimental environment, b) the captured range data
(a) (b)

Fig. 3. a) Sample access directions for an object, b) a set of
graspability points and an object accessibility direction.

(a) (b)

Fig. 2. a) Integration of the target object’s solid model into the
workspace, b) multi-resolution octree representation of obstacles.

V. OBJECT VISIBILITY

Given object graspability, it should be verified by
considering the global environment. When verified, it is
called global accessibility. As the object accessibility is
encoded as ‘access direction + contact curve’ and priorities
are given to the instances, the algorithm starts with the
highest accessibility direction and then tested for global
accessibility. If the test succeeds, a contact point is returned,
the robot arm moves toward the contact point, and grasps
the object. If the test fails, the object accessibility instance
with the next-priority is selected, and the same process is
repeated.
 The global accessibility is verified through visibility,
which is classified into object visibility and gripper
visibility. In order for an object to be retrieved, the object
should be fully visible. The visibility test is done using
hardware visibility query supported by contemporary
graphics hardware, which scan-converts the object and
checks if the depth of any pixel is changed. The visibility
query returns the number of fragments (pixels) that have
passed the depth test. We have implemented the hardware
visibility query using DirectX 9.0 IDirect3DQuery9
interface. When the query type
D3DQUERYTYPE_OCCLUSION is given to
IDirect3DQuery9, the number of pixels visible on the screen
is returned. As it is done in hardware, the query is executed
extremely fast.
 Two types of projection are supported by graphics
hardware: orthographic and perspective. We use the
orthographic projection in which the viewing direction is set
to one of the object’s access direction starting with the
access direction with the highest priority. For instance, let’s
assume the priority for the cereal box is set to ±x over ±y,
for the object in Fig. 3.
 The surrounding environment of the cereal box is
shown in Fig. 4(a). Let us discuss the visibility test with the
access/viewing direction of –x.

First, the surrounding environment which include
octrees, planes, and recognized objects except target object
are rendered, as illustrated in Fig. 4(b). Second, the depth-
test condition is set to 'greater-than' so as to make only the
farther (not nearer) pixels can pass the depth-test, and then
the visibility query is issued with the target object. Finally,
we render the target object. If the target object passes the
depth test, then the visibility query returns the number of
rendered pixel. If the object is fully visible, returned number
of visibility test is zero.
 For the depth test with the target object, we need to
consider only the back faces. We can draw the back faces of
object to control the culling mode using DirectX
SetRenderState interface. More specifically, we invoke
SetRenderState (D3DRS_CULLMODE, D3DCULL_CW).
Then, the front faces are culled, and only the back faces are
rendered. Fig. 4(c) shows the back faces of the cereal box,
and Fig. 4(d) is the rendered back face of the target object
by using back face culling. As it shown in the figure, several
pixels of target object’s back faces are rendered, and so the
target object is determined to be not retrievable along –x.
 Partially invisible objects can also be grasped and
moved, but it requires motion planing. Currently, motion
planning is simplified and every object is assumed to be
moved along the opposite of the access direction. In other
words, we assume that the robot will grasp the object at the
given point and move it along a line determined by the
accessibility direction (a normal to the grasp point on the
robots surface).
 In Fig. 4, we have shown that the cereal box is not
retrievable along –x. The same geometric reasoning along
the access direction x shows that the box is not retrievable
either. Then, the next-priority access directions, i.e. ±y, are
investigated. Due to the presence of the plane feature, the
access direction y is immediately rejected. Fig. 5 shows the
three steps of the object visibility test along –y.

(a) (b)

(c) (d)

Fig. 4. Object visibility test along –x: a) The target object in the 3D
model, b) the rendered environment, c) back face of the target object,
d) rendered environment including the target object.

(b) (b)

(c) (d)

Fig. 5. Object visibility test along –y: a) The target object in the 3D
model, b) the rendered environment from top, c) top of the object, d)
rendered environment including the target object from above.

 First, we render the environment. Fig. 5(b) illustrates
the environment looking down along –y direction. Then the
visibility test is performed using the back faces of the object
as shown in Fig. 5(c). In this case, there is no pixel to pass
the depth test. Therefore the cereal box is determined to be
fully visible. Fig. 5(d) shows the cereal box does not collide
with obstacles.

VI. GRIPPER VISIBILITY

Object visibility is just the necessary condition for object
manipulation. The sufficient condition is that the gripper
should be able to access the object and grasp it. If the
gripper can translate towards the target object without
colliding with the other primitives in the scene to obtain the
configuration in Fig. 6(a), where the gripper contacts the
target object, the object is determined to be globally
accessible.
 In principle, the global accessibility test requires the
swept volume of the gripper to be tested for collision with
the scene primitives. The swept volume is generated by
linearly connecting the gripper of the initial pose and that of
the final pose, as illustrated in Fig. 6(a). Sweeping and
collision detection are not cheap operations. Fortunately,
they can be replaced by gripper visibility test.
 Given the viewing direction (access direction of the
local accessibility instance) of the orthographic projection,
the boundary faces of the gripper are classified into front
and back faces. We need to consider only the back faces,
shaded in Fig. 7(c). If the back faces (at the final pose) are
all visible along the access direction, it is concluded that the
sweeping gripper does not collide with the scene primitives.
 The gripper’s visibility test goes through the process
similar to that of object visibility test. First, the surrounding
environment is rendered. Second, the condition of depth test
is set, and finally the back face of gripper is rendered using
visibility query. The gripper is fully visible, the sweeping
gripper does not collide with the scene primitives, and
consequently the target object is determined to be globally
accessible. Fig. 7(d) shows gripper final pose with
environment. The gripper is fully visible.
 Recall that there are (almost always) infinitely many
contact points † . Note that the gripper visibility can be
verified for some contact points while it may not be for
others. Fig. 8 shows an example. We then have to be able to

† Some objects may have a single contact point. A good example is a cola
can when the access direction is equal to the can axis.

decide if the gripper-visible contact points exist, and to
select the best/optimal one among them, if any. For the
purpose, the contact curve is sampled.
 The sampled points are given priorities. It can be either
computed on the fly or pre-determined and stored in the
database. Currently, it is computed on the fly: The points at
the center of the contact curve are given the higher
priorities. Starting from the highest-priority sampled point,
the gripper visibility test is performed. If verified, the
contact point is determined. Otherwise, the nest-priority
sampled point is tested. If all sampled points are rejected,
the object is determined to be not accessible.

Fig. 8.Visible and invisible points

VII. EXTENSIONS AND DISCUSSIONS

A. Quality of an Accessibility Direction
 Among all accessible directions that passed the
visibility test, the motion planning module needs to select
one. Consequently a priority or quality assigned to an
accessible direction would be desirable to help selecting an
accessible direction. The priorities can be either defined off-
line and stored in the object database or determined on-line
considering both off-line and real-time priorities/qualities.
 A simple and intuitive quality measure is based on the
gripper-object overlap in which the more the gripper and the
object overlap, the higher the friction, the better the grasp.

(a) (b)

Fig. 6. Gripper visibility test using back faces

(a) (b)

(c) (d)

Fig. 7. Gripper visibility test along -y

Fig. 9. Gripper-object overlap depends on the obstacles around the object.

 The gripper-object overlap relies on measuring the
maximum overlap between the gripper jaws and object
before hitting an obstacle. Figure 9 shows two accessible
directions in which one has 50% gripper-object overlap and
the other has only 15% overlap.

The gripper-object overlap is also determined using the
visibility test. Basically if the gripper cannot reach the
contact point completely, then the visibility test is applied in
fixed length considering the gripper with some offset from
the contact point on the object.

B. Local Accessibility vs. Global Accessibility
 As mentioned earlier, it is assumed that the object
would be grasped and removed along the accessibility
direction. In other words, there should be no object along
the given direction and the robot does not have any limit
manipulating the object along the accessibility direction.
However, in real environment, an object may need to be
grasped at the given grasped point, lifted and moved along
another direction due to manipulator’s limits or obstacles in
the environment. This means that the local accessibility, a
limited area around the target object, needs to be tested
rather than the global accessibility. The limited area around
the target object is represented by a sphere located at the
center of the object with a given locality radius (Fig. 10).
The locality radius can be as small as the length of the
gripper plus half of the object’s width. Figure 10 shows the
minimum locality radius with which a gripper can slide in
and grasp the target object. The red blocks show the
obstacles that have been rendered and considered in the
accessibility analysis. In contrast, the orange blocks are the
obstacles that are outside the locality sphere and have not
been considered in the accessibility analysis.
 The proposed method has been modified to determine
the accessibility given the locality radius of local
accessibility around the target object. The modified version
allows the test for both local and global accessibility by
changing the locality radius.

C. Far vs. Near Objects
 When a service robot is far away from a target object, it
is not important to know all accessible directions for each
contact curve. Rather it is important to know if a contact
curve is accessible in one of the sample points. However,
when the robot gets closer and needs to manipulate the
object, then it needs to know all possible accessible
directions to efficiently determine the path and perform the
task. Consequently, when the robot is far away from an
object, the accessibility analysis on each contact curve

would return as soon as one sample point is acceptable. This
shows that the contact curve under study can be accessed at
least at one sample point.
 On the average, the accessibility analysis for faraway
objects can be 50% faster than near objects, considering the
above method. A heuristic, to further improve the
accessibility analysis for faraway objects, is to start from top
of the contact curve. It would reduce the analysis time up to
90% because the objects are normally sitting on a flat
surface and they are accessible from the top.

VIII. EXPERIMENTAL RESULTS

The above method was implemented considering the
following scenario: a service robot is requested to grasp a
pre-selected object. Then the robot captures images from the
environment, makes the 3D model, recognizes the object,
determines the accessibility directions, does motion
planning based on a feasible accessible direction, and moves
the manipulator to grasp it (Fig. 11).

Fig. 11: Object manipulation flowchart

 The algorithms were implemented on a modest PC
(Pentium 4 2.8 GHz, and NVIDIA Geforce 6600GT
graphics card) and many experiments have been conducted.
Table I shows the measured results of system performance
for a sample environment. The accessibility test has been
performed on a 60x60cm2 area with 0.05cm accuracy. It
should be mentioned that the number of objects in the
database does not affect the process of registering a pre-
selected object. However, if all the objects in the database

Fig. 10. Local accessibility based on the locality radius.

Locality radius

Gripper

are required to be registered in the environment, then the
object recognition time will increase linearly based on the
number of objects in the database.

TABLE I

MEASUREMENT OF SYSTEM PERFORMANCE
 Average time (ms)

SIFT feature calculation 188
Plane extraction 19

Object recognition
(3 object models) 350

Multi-resolution octree
construction 60

Accessibility test
without quality measuring 13

Accessibility test
with quality measuring 20

Currently the manipulation is done using the 3D world

model which is not supposed to be updated. The
experiments have shown that the smaller the object, the
harder to accurately determine the pose of the object.
Consequently, a continuous 3D modeling is under
investigation to improve the accuracy of the 3D model
progressively.

Fig. 12 shows a sample manipulation task in which the
robot is requested to grasp a Sunkist container inside a
refrigerator. As can be seen from the pictures, the 3D model
only includes a small part of the refrigerator and does not
model the whole refrigerator due to the small camera view
angle.

IX. CONCLUSION

This paper presents a novel approach to accessibility
analysis for manipulative robotic tasks: visibility-based
geometric reasoning. The accessibility analysis process
utilizes the visibility query, which is accelerated by graphics
hardware. The performance and robustness of the proposed
approach are evaluated in cluttered indoor environments
experimentally. The experimental results demonstrated that
the proposed methods are fast and robust enough to
manipulate 3D objects for real-time robotic application.
Currently, the arm follows a predefined path, but it is to be
planned. Moreover, the minimum clearance needed for a
robot gripper to access a grasp point should be determined.
Therefore, future research plan includes the integration with
motion planner and grasp analysis.

ACKNOWLEDGMENT

This paper was performed for the Intelligent Robotics
Development Program, one of the 21st Century Frontier
R&D Programs funded by the Ministry of Science and
Technology of Korea. The authors like to thank Ms. Suyeon
Hong and Mr. Dohyong Lee for helping with experiments.
The authors also like to thanks Ms. Eunyoung Kim for her
help and support in using the 3D modelling module for the
accessibility analysis.

REFERENCES
[1] ANSI, “Dimensioning and Tolerancing,” Am. Nat'l Standard ANSI

Y14.5M-1982, Am. Soc. Mechanical Engineers, United Eng. Center,
Feb. 1982.

[2] Steven N. Spitz, Aristides A.G. Requicha, “Accessibility Analysis
Using Computer Graphics Hardware,” IEEE, 2000.

[3] R.H. Wilson, “Geometric Reasoning about Assembly Tools,” Artificial
Intelligence, vol. 98, nos. 1-2, pp. 237-279, Jan. 1998.

[4] E. Trucco, M. Umasuthan, A. Wallace, and V. Roberto, “Model-Based
Planning of Optimal Sensor Placements for Inspection,” IEEE Trans.
Robotics and Automation, vol. 13, no. 2, pp. 182-193, Apr. 1997.

[5] P. Gupta, R. Janardan, J. Majhi, and T. Woo, “Efficient Geometric
Algorithms for Workpiece Orientation in 4- and 5-Axis NC Machining,”
Computer-Aided Design, vol. 28, no. 8, pp. 577-587, 1996.

[6] Edwin E, “A Subdivision Algorithm for Computer Display of Curved
Surfaces,” Catmull, University of Utah, December 1974.

[7] D. Cohen-Or, Y. Chrysanthou, and C. T. Silva, “A survey of visibility
for walkthrough applications,” Proc. of EUROGRAPHICS'00, course
notes, 2000.

[8] S. Lee, D. Jang, E. Kim, S. Hong, and J. Han, “Stereo vision based real-
time workspace modeling for robotic manipulation,” IROS 2005.

[9] S. Se, D. Lowe and J. Little, “Vision-based mapping with backward
correction,” 2002 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2002.

[10] D. Lowe. “Object recognition from local scale invariant features,” In
proceedings of the Seventh International Conference on Computer
Vision (ICCV’99), pages 1150–1157, Kerkyra, Greece, September 1999

[11] A. Limaiem and H. A. ElMaraghy, “A General Method for
Accessibility Analysis,” International Conference on Robotics &
Automation (ICRA’97), Albuquerque, New Mexico, April 1997.

[12] A.J. Spyridi and A.A.G. Requicha, “Accessibility Analysis for
Polyhedral Objects”, in S.G. Tzafestas, ed., Engineering Systems with
Intelligence: Concepts, Tools and Applications, Dordrecht, Holland:
Kluwer Academic Publishers, Inc. pp. 317-324, 1991.

[13] C.P. Lim and C.H. Menq, “CMM feature accessibility and path
generation,” International Journal of Production Research, vol. 32, pp.
597-618, March 1994.

(a) (b)

(c) (d)

Fig. 12. a) Robot’s manipulator is positioned to capture the scene, b)
the scene from camera point of view, c) the 3D modeled environment
represented in the simulation showing the target object in blue and the
obstacles in red (octree cells), d) the robot has grasped the object after
accessibility analysis.

