
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Computer-Aided Design 40 (2008) 422–438
www.elsevier.com/locate/cad

Visibility-based spatial reasoning for object manipulation in
cluttered environments

Han-Young Janga, Hadi Moradib, Phuoc Le Minhc, Sukhan Leec, JungHyun Hana,∗

a College of Information and Communications, Korea University, Seoul, 136-701, Republic of Korea
b Department of Computer Science, University of Southern California, LA, CA, USA

c Intelligent Systems Research Center, Sungkyunkwan University, Suwon, Republic of Korea

Received 12 December 2006; accepted 10 December 2007

Abstract

In this paper, we present visibility-based spatial reasoning techniques for real-time object manipulation in cluttered environments. When a
robot is requested to manipulate an object, a collision-free path should be determined to access, grasp, and move the target object. This often
requires processing of time-consuming motion planning routines, making real-time object manipulation difficult or infeasible, especially in a
robot with a high DOF and/or in a highly cluttered environment. This paper places special emphasis on developing real-time motion planning, in
particular, for accessing and removing an object in a cluttered workspace, as a local planner that can be integrated with a general motion planner
for improved overall efficiency. In the proposed approach, the access direction of the object to grasp is determined through visibility query, and the
removal direction to retrieve the object grasped by the gripper is computed using an environment map. The experimental results demonstrate that
the proposed approach, when implemented by graphics hardware, is fast and robust enough to manipulate 3D objects in real-time applications.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, a wide spectrum of effort has been expended
in order to extend the robotics technology beyond industrial
applications. Examples include mobile robots in the realm
of service and personal assistance, especially for aiding the
elderly or the disabled. A typical task of such a service or
assistant robot is to manipulate objects of daily necessities on
the user’s request. Note that object manipulation comprises
several subtasks, such as approaching, grasping, removing
and delivering, each of which appears to be highly involved.
In general, it is extremely difficult for a robot to achieve
full autonomy of object manipulation in a home or service
environment. This is because, unlike an industrial environment,
a home or service environment is often unstructured, may
not be kept under control, and thus, may not remain static.
Furthermore, object manipulation in the context of service to
humans needs to be performed in real time.

Traditionally, object manipulation has been part of motion
planning. Unfortunately, the complex nature of motion
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planning for high DOF (degrees of freedom) robots often
makes it impossible to achieve real-time performance [1].
For instance, the generation of a mobile manipulation path
for a humanoid robot to grasp an object may require a few
minutes [2]. Even for a single arm (typically of 6 or 7
DOF) with no mobile platform, real-time motion planning has
been a challenging task [3]. It becomes much harder, if not
intractable, for motion planning to be done in highly cluttered
environments. The direct application of conventional motion
planning to a grasp point selected on a trial-and-error basis
would be too costly and prone to failure if the selected grasp
point of the requested object does not turn out to be collision-
free. If the grasp point is not reachable due to the obstacles
in the neighborhood of the object, the robot requires further
time-consuming motion planning, with a new grasp point until
it succeeds. It would be much better to have a local but fast
motion planner that can simultaneously determine a grasp point
and local paths to access the grasp point and remove the grasped
object, such that the local motion planner can be well integrated
with a general motion planner for improved overall efficiency.

This paper proposes real-time techniques for providing
such a local motion plan for the cluttered neighborhood of
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a requested object, and leaving the rest to a general motion
planner. Specifically, this paper focuses on the visibility-
based spatial reasoning techniques, in order to determine
the gripper access directions and object removal directions,
i.e. the directions along which the robot gripper can access
and remove the requested object. The real-time performance is
achieved using visibility query and environment map, which are
supported by commodity graphics hardware.

The organization of this paper is as follows. Section 2
introduces related work. Section 3 presents object recognition
and 3D workspace modeling. Section 4 overviews the proposed
approach in the context of motion planning. The major
contributions of this paper are presented in Section 5, which
discusses the gripper accessibility analysis, and Section 6,
which discusses the technique for determining the object
removal directions. Section 7 discusses the integration of the
proposed approach with general motion planning. Section 8
presents the experimental results and evaluates the performance
of the proposed approaches. Finally, Section 9 concludes this
paper.

2. Related work

The visibility-based spatial reasoning techniques presented
in this paper complement general motion planning, and
eventually enable the motion planner to achieve real-time
performance in cluttered environments. In the motion planning
field, probabilistic/randomized methods have been targeted
to generate paths with high probability for high-dimensional
configuration spaces, but may not be able to generate paths in
real time. For instance, Kuffner et al. [2] used RRT-connect
(Rapidly-exploring Randomized Trees) to generate paths for
a humanoid robot. In their experiments, a typical grasping
operation took between a few seconds to a few minutes to
generate a path, on a 900 MHz Pentium 3 running Linux. Even
for a single arm (typically of 6 or 7 DOF), motion planning
presents a computational challenge due to the dimensionality
of the search space. For example, Hsu et al. [3] analyzed
the performance of motion planning for robots with different
DOF, and showed that it may take a few seconds for motion
planning for a 6- or 7-DOF robot. In addition, the probabilistic
approaches have a difficulty in generating a path in cluttered
environments due to the narrow passage problem [4] even
though they usually work better than many alternatives such
as the elastic strip method, which is discussed later. There have
been many efforts to solve or reduce this problem [4–6] but
still there is no guarantee to do motion planning in real time in
cluttered environments.

Brook proposed the elastic strip method, which is another
motion planning approach, promising to provide smooth
motion and real-time performance [7]. In this approach, the
potential field generated by the obstacles in the environments is
applied for the robot to naturally move the robot away from the
obstacles. At the same time, an elastic strip, stretched from the
current pose to the goal pose, provides the potential necessary
to move the robot to the goal. Finally, the task potential is
applied to achieve the task of grasping and removing an object.

Unfortunately, this method inherits the shortcomings of the
potential field approach, i.e. being trapped in local minima.
This is a serious problem in cluttered environments in which
the chance of being trapped in local minima or oscillation is
very high. In such cases, escaping from local minima would
take a long time or may not be successful [8].

There is another issue in the elastic strip method, where
motion planning may be performed given a grasp point on an
object, without knowing whether it is actually reachable. In case
the given grasp point is not reachable, due to the obstacles in
the neighborhood of the object, the robot should attempt other
grasp points until finding a reachable one. This trial-and-error
approach would take a long time if each individual trial is time-
consuming. In the probabilistic method, multiple grasp points
can be used in the query phase, and connected to an already-
built roadmap. In other words, after constructing the roadmap
in the learning phase, multiple candidate grasp points are added
to the configuration space in the query phase such that the
algorithm continues to connect these points to the roadmap.
The immediate advantage of this approach, over the elastic
strip method, is that there is no need to recalculate/reconstruct
the initial roadmap for different grasp points. In cluttered
environments, however, generation of the initial roadmap may
be time-consuming, and the process of connecting all the new
points to the roadmap often fails, due to the narrow passage
problem. On the other hand, it would be possible to avoid the
costly process of connecting all grasp points to the roadmap by
simply relying on the solutions based on the connectivity of a
few grasp points to the roadmap. However, this simplification
may result in overseeing better grasp points.

This paper presents an accessibility analysis technique for
computing gripper access directions. In general, accessibility
analysis refers to spatial reasoning activity that seeks to
determine the directions along which a tool can access an
object. The major work in accessibility analysis has been
done in the inspection field, with particular significance to
the coordinate measuring machines (CMMs) [9]. However,
the application fields also include tool path planning for
assembly [10], sensor placement for computer vision [11],
numerically controlled machining [12], etc. In these fields,
the proposed algorithms run mostly off-line to determine the
accessibility.

Spyridi and Requicha [9,13] were the first to incorporate
a systematic accessibility analysis for inspecting features.
They use a computationally intensive method to determine
first if a point is locally accessible, and then consider the
entire workpiece for verification. Lim and Menq proposed an
accessibility analysis approach, for an infinite length probe
based on a ray tracing algorithm [14]. They determine a discrete
3D accessibility cone which is transformed into a 2D map
in which only the orientation of the probe is expressed by
two angles in a spherical coordinate system. A heuristic is
used to determine the optimal probe direction for a set of
inspection points. Limeiam and ElMaraghy [15] addressed
accessibility analysis of a point in 3D space using elementary
solid modeling operations: intersection, translation and scaling.
The accessibility analysis research report most relevant to our
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efforts can be found in [16], where the accessible directions for
CMM tactile probes are computed using a cube map [17]. In
this approach, however, it is assumed that the probe’s path to
the workpiece is completely clear, i.e. the probe may collide
only with the workpiece.

The issue of collision-free motion planning in straight
line motion has been addressed in assembly planning [18–
20]. However, in these studies, only the assembly parts
are considered for collision, ignoring the robot assembling
the parts, its gripper, and the environment surrounding it.
Furthermore, the assembly planning methods only addressed
off-line planning in which the time constraint is not critical.
In contrast, this paper presents an approach that considers the
whole robot and the surrounding environment for manipulation.
In addition, a major achievement in this approach is its real-
time performance which makes it suitable for real-life dynamic
environments.

The accessibility analysis proposed in this paper relies on
a visibility test. The visibility test has been a fundamental
problem since the very beginning of the computer graphics
field. Among the visibility issues, the focus was dominantly on
hidden surface removal. The problem has been mostly solved,
and the depth test technique using z-buffer [21] dominates for
interactive applications. The z-buffer stores the z-coordinate,
i.e. depth value, for every pixel that has been rendered so
far. When the next object is processed, the depth test discards
its pixel if the pixel’s depth is greater than the current value
for that location in the z-buffer. This has the effect that a
pixel occluded by another pixel is not rendered. Such an
occluded pixel is said to be invisible. The depth test allows
only visible pixels to be rendered. In addition to the z-buffer,
current commodity graphics hardware supports the image-
space visibility query [22,23], which computes the number of
visible pixels belonging to a given primitive.

3. Object recognition and workspace modeling

The experimental robotic platform used in this study is
shown in Fig. 1(a). It is equipped with a robotic manipulator
(Fig. 1(b)), which is similar to a human arm with 7 DOF. The
arm contains a parallel jaw gripper (Fig. 1(c)), which provides
the basic capability for grasping and manipulating objects. A
stereo camera is mounted on the parallel jaw gripper in an eye-
on-hand configuration, and is used for modeling the workspace.

Fig. 2 shows the overall software system built for object
manipulation. We designed and implemented a 3D workspace
modeling module, and a visibility-based spatial reasoning
module which works as a local motion planner. The workspace
modeling techniques have been presented in [24], and this paper
focuses on the visibility-based spatial reasoning techniques. For
the sake of completeness, however, this section summarizes the
workspace modeling techniques presented in [24].

Fig. 3 shows the experimental workspace named Robot
Café. The stereo camera, the external parameters of which
are calibrated a priori using a calibration block, captures the
workspace on the fly and produces 3D point clouds as range
data. The 3D point clouds are associated with photometric data

such as colors of the corresponding pixels in the reference
2D images. Fig. 4(a) and (b) show the cluttered workspace
and its point clouds, respectively. In Fig. 4(b), the 3D points
are displayed with their colors, not only for the purpose
of visualization but also for showing that both geometric
and photometric features are used for object recognition and
workspace modeling. The workspace at hand are assumed to
be rich with textures enough for the stereo camera to capture
a sufficient number of 3D points to process. Should a poorly
textured environment be considered, an active 3D camera,
e.g. with structured light [25], can replace the stereo camera.

Suppose that the pizza sauce bottle located at the center
of the cluttered environment in Fig. 4(a) is the object
requested to be manipulated, henceforth called the target object.
Recognition and pose estimation are done for the target objects
that have geometric and photometric feature representations,
such as 3D solid/geometric models and SIFT (scale-invariant
feature transform) [26,27] models respectively, in the object
database.

Recognition and pose estimation of the target object start
with extraction of 3D features such as 3D SIFTs (i.e., SIFTs
with their 3D position data), 3D lines, and/or other 3D shape
features from 3D point clouds and 2D images. The extracted
3D features, which may be incomplete and noisy, are then
matched with the target object model in the database to generate
all the possible interpretations (with their probabilities) on
the pose of the target object in the workspace. A series of
stereo images captured successively on the fly are then used
to filter multiple interpretations and converge them into the
correct pose estimate. The positions of stereo camera to be
used for filtering are obtained either from the visual odometer
using 3D SIFTs or from the manipulator encoder readings.
Note that filtering of multiple interpretations from a sequence
of images is a process of accumulating evidences for robust
decision making, thus making the target object recognition and
pose estimation insensitive to environment variations such as
lighting conditions and occlusions.

The target object model extracted from the database is
placed into the pose estimated in the recognition phase, and
then the 3D point clouds belonging to the target object are
removed, as shown in Fig. 4(c). The remaining point clouds,
i.e. the points in the neighborhood of the target object are
taken as obstacles, which should be avoided during object
manipulation. We often have a huge number of obstacle points,
and therefore the points are dynamically sorted in regularly-
spaced uniform 3D cells. If a cuboid cell contains at least one
point, it is taken as an obstacle. Fig. 4(d) shows the workspace
model composed of the target object and obstacle cells. The
3D obstacle cells can be updated as more 3D point clouds are
accumulated from multiple viewpoints and distances.

Note that the cuboid cell representation is a conservative
over-estimation of the extents of the obstacles. It is said to be
conservative because whenever an obstacle cell is collision-
free with the robot arm and target object, so are the actual
obstacle points in it. Therefore, correct spatial reasoning with
the obstacle cells does not produce an invalid path, e.g., in
collision with the environment.
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(a) Robot platform. (b) Arm specification (http://www.amtec-
robotics.com/robotersysteme en.html).

(c) Gripper with an eye-on-hand configuration.

Fig. 1. A service robot.

4. Overview: Spatial reasoning for motion planning

The approach proposed in this paper delimits the cluttered
environment neighboring the target object, as shown in Fig. 5.
The cluttered neighborhood is represented by a sphere, named
the locality sphere. Using the locality sphere, the overall path of
the robot gripper to access, grasp, and deliver the target object
is broken down into 4 sub-paths, as illustrated in Fig. 5: (i) from
the start pose to the access pose, located at the boundary of the
locality sphere, (ii) from the access pose to the grasp pose in

which the object is grasped by closing the gripper’s jaw, (iii)
from the grasp pose to the delivery pose, also located at the
locality sphere’s boundary, and finally (iv) from the delivery
pose to the goal pose. Moving the base of the robot has not
been part of our current research.

The first and fourth sub-paths in Fig. 5 lie in a relatively
clear area, and do not require a significant amount of time for
planning. Thus, a general motion planning can be invoked for
generating the sub-paths efficiently. In contrast, the second and
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Fig. 2. Flow chart of the proposed system.

third sub-paths are located in the cluttered area, and planning
for these is usually time-consuming. In the proposed approach,
planning the paths within the locality sphere is accelerated
by the gripper accessibility analysis (discussed in Section 5)
and object removability analysis (discussed in Section 6). As

Fig. 3. Experimental workspace: Robot Café.

illustrated in Fig. 2, the general motion planning is invoked after
the accessibility and removability analyses are done.

(a) Objects in the workspace. (b) Point clouds for the range data.

(c) Target object registered in the scene. (d) Workspace model.

Fig. 4. Workspace modeling.
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Fig. 5. Locality sphere and the overall path of the robot gripper.

In this study, the gripper’s path within the locality sphere
is restricted to be linear. Along a so-called access direction,
the gripper translates, i.e. follows a linear path, from the
access pose to the grasp pose. The gripper accessibility analysis
discussed in Section 5 computes the access pose and the grasp
pose, which are connected through the access direction. Since
the accessibility analysis is done by graphics hardware, it is
extremely fast. Note that, however, the accessibility analysis is
done not for the entire arm, but for the gripper only. Therefore,
motion planning is required to guarantee the collision-free path
for the rest of the arm while the gripper travels along the access
direction. In other words, the collision-free path of the gripper
is guaranteed by accessibility analysis, while that of the rest of
the arm is guaranteed by the motion planner. Motion planning
only for the rest of the arm runs much faster than that for the
entire arm.

At the grasp pose, the parallel jaws are closed, in order to
grasp the target object. After grasping the object, following a
linear direction which is called removal direction, the gripper
will move it to the delivery pose. The removability analysis,
presented in Section 6, guarantees the collision-free path of
the gripper and the object, from the grasp pose to the delivery
pose. In restricting the movement of the gripper to the computed
linear path, motion planning is invoked for the rest of the arm.

In summary, the visibility-based spatial reasoning methods
are proposed to complement general motion planning in
two senses: (1) The sets of all possible grasp points and
access/removal directions are determined extremely quickly,
eliminating the time-consuming trial-and-error steps of the
general motion planning approaches. (2) The gripper’s linear
paths within the cluttered environment are efficiently generated,
reducing the complexity of the overall motion planning.

5. Gripper accessibility analysis

This section presents the technique for computing the access
pose, the grasp pose, and the access direction. As discussed in
Section 3, all target objects have object models in the database,
and the object model contains gripper accessibility information
of each object. For the pizza sauce bottle shown in Fig. 6, it
is reasonable to define four accessible directions: ±x and ±z
with respect to its local frame. (Among them, only two, −x and

Fig. 6. Accessible directions in the database.

(a) Contact point.

(b) Contact curve
associated with accessible
direction −x .

(c) Contact curve associated
with accessible direction +z.

Fig. 7. Contact point and curve.

+z, are illustrated in the figure). In contrast, access along vector
(−1, 0, −1) may not lead to stable gasping. The four directions,
±x and ±z, are stored as recommended accessible directions in
the object database.

For an accessible direction, the gripper can touch the
target object at (infinitely) many contact points. As illustrated
in Fig. 7(a), a contact point is defined as the intersection
between the object surface and the gripper axis when the
gripper translates toward the object along the accessible
direction. A set of contact points can be represented as a
curve, named a contact curve. In the current implementation,
a contact curve is represented using a cubic Bézier curve.
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Fig. 8. Graspable points.

In the database, gripper accessibility is represented as a set
of 〈accessible direction, contact curve〉 pairs. The pizza sauce
bottle has four such pairs, two of which are shown in Fig. 7(b)
and (c).

The gripper accessibility retrieved from the database should
be verified by considering the neighborhood of the target
object, i.e. each accessible direction should be verified by
testing if the gripper can translate towards the target object
along the direction without colliding with the obstacles. Note
that the gripper accessibility can be verified for some contact
points while it may not be for others due to obstacles. Fig. 8
shows an example, where the verified contact points are named
graspable. In order to determine the graspable points, the

contact curve is sampled, and then collision is tested for
each sampled point. The collision test normally requires the
swept volume of the gripper, which is generated by linearly
connecting the gripper of the access pose to that of the grasp
pose. In the proposed approach, the collision test using the
swept volume can be simply replaced by visibility query, which
is supported by virtually all kinds of graphics hardware.

As discussed in Section 2, the visibility query renders an
object and returns the number of visible, i.e. un-occluded, pixels
that have passed the depth test. For the visibility query, we use
orthographic projection, the viewing direction of which is made
equal to the accessible direction. Fig. 9(a) shows the workspace
model of Fig. 4(d) seen along the accessible direction −x . The
verification process starts by rendering the gripper at a sampled
point with the visibility query. No pixel belonging to the gripper
is occluded because obstacles have not been rendered. The
gripper is fully visible, as shown in Fig. 9(b). The visibility
query returns the number of visible pixels, say m. The returned
number is recorded, and the depth buffer is cleared. Then, the
obstacles within the locality sphere are rendered, as shown in
Fig. 9(c). Without clearing the depth buffer, the gripper is then
rendered, i.e. the gripper is inserted into the rendered scene of
the obstacles in Fig. 9(c). The result is shown in Fig. 9(d). It is
observed that the lower part of the gripper is occluded by the
obstacles and therefore invisible. If the number of visible pixels
returned by the visibility query is n, it is less than m, indicating

(a) Orthographic view along −x . (b) Gripper rendered
at a sampled point.

(c) Rendered obstacles.

(d) Ripper rendered into the obstacles (collision). (e) Gripper rendered
at another sampled
point.

(f) Gripper rendered into the obstacles (no
collision).

Fig. 9. Gripper visibility test.
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(a) Pizza sauce bottle. (b) Juice bottle.

Fig. 10. Gripper widths in a 1D texture.

Fig. 11. Cube map.

that the gripper collides with obstacles if it translates towards
the sampled point. The sampled point is not graspable.

The visibility analysis is repeated for all sampled points.
Fig. 9(e) shows the gripper rendered at a different sampled
point. The number of visible pixels m is recorded. Then,
the gripper is rendered once again onto the already-rendered
environment shown in Fig. 9(c). The result is shown in Fig. 9(f).
At this time, no part of the gripper is occluded by the obstacles,
i.e. the gripper is fully visible, and the returned value n is
equal to m. Therefore, the gripper is determined to be collision-
free when translating towards the sampled point, which is
consequently taken as the graspable point.

In the current implementation, 10 points are sampled per
contact curve, and the set of all graspable points is computed
for the target object. (This requires a few milliseconds, as will
be discussed in Section 8.) In order to select the best one out of
the graspable point set, a cost function has been devised:

C = c1(1/h) + c2(1/w) (1)

where h is the normalized height of a graspable point, and w is
the normalized object width at the graspable point. The higher
and the thicker, the more stable grasping is achieved and the
less cost is needed for grasping. (When w is greater than the
maximum distance between the jaws of the gripper, however, w
is set to 0 to make the cost C infinity.) When the best graspable

point with the least cost is selected, the grasp and access poses
are determined. The grasp pose is used as the input for the next
stage, which computes the removal direction of both the target
object and gripper.

Note that a contact point may require a distinct gripper jaw
width, as illustrated in Fig. 10(a). These varying widths are
recorded in a 1D texture, which is normally represented in a
1D array of floating-point values, i.e., each texel is a floating-
point value representing a width. The 1D texture is indexed
by the parameter t = [0, 1] of the Bézier contact curve. In
other words, the Bézier curve’s parameter at a sampled point
is used to reference the 1D texture and retrieve the width used
for evaluating the cost function in Eq. (1). Unless an object is
sharply curved, the size of the texture map can usually be kept
small. This is especially true for box-shaped objects where the
entire contact curve is assigned a uniform gripper jaw width,
as shown in Fig. 10(b), where only 2 texels can define the 1D
texture.

6. Object removability analysis

In computing the collision-free removal directions, environ-
ment map [28] and Minkowski sum [29] prove to be useful. In
computer graphics, the environment map is used to describe the
scene surrounding an object. The most popular implementation
of the environment map is the cube map [17], shown in Fig. 11,
where each face covers a 90◦ field of view both horizontally and
vertically. There are six faces per cube, and each face is imple-
mented as a square 2D image texture. Notice that a pixel (more
precisely, a texel) in the cube map corresponds to a vector from
the origin at the cube center.

The Minkowski sum of two point sets A and B is defined as
the set

A ⊕ B = {a − b : a ∈ A, b ∈ B} (2)

where a − b is the vector sum of the position vectors a and
−b. Geometrically, the Minkowski sum is obtained by adding
A to the reflection of B about the origin, as shown in Fig. 12(a).
Suppose that B is moving past the obstacle A. The collision
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(a) Minkowski sum.

(b) No collision.

(c) Collision.

Fig. 12. Minkowski sum and collision detection.

test between them is often implemented as follows [30]: A is
‘grown’ by B to make A⊕ B, B is ‘shrunk’ into a point, and the
moving point, i.e. a ray, is tested for collision with the grown
obstacle A ⊕ B, as shown in Fig. 12(b) and (c).

Suppose that the gripper is placed at a graspable point to
make the grasp pose, as shown in Fig. 13(a). The graspable
point is taken as the origin of the coordinate system. Let us
denote the combination of the object and gripper by O . The
point clouds P is simply a set of points, and therefore the
Minkowski sum P ⊕O is the union of −O located at each point
pi in the point clouds. Fig. 13(b) visualizes the Minkowski sum
P ⊕ O .

Placing the viewpoint (eye) at the graspable point, the
Minkowski sum P ⊕ O is projected to the cube map. Projection
is done for each square image of the cube map. Fig. 13(c) shows
the result, and Fig. 13(d) is its unfolded version. In the black-
and-white images of Fig. 13(c) and (d), the texels which are not
occupied by the projected Minkowski sum are colored in white.
The white texels represent the rays or directions, along which
no part of the target object and the gripper is occluded by the
obstacles. In other words, the target object and the gripper do

not collide with the obstacles when they linearly translate along
the directions represented by the white texels. Such directions
are called the removable directions.

For selecting the best one out of the removal directions, a
simple heuristic has been adopted. Note that the removable
directions, shown as white texels in Fig. 13(c), form a set of
connected components in the cube map surface. The connected
components are easily identified using a labeling algorithm.
The largest connected component is selected, and its center
texel is selected as the best removal direction. Fig. 13(e) shows
the selected removal direction, both in the cube map and in the
workspace.

Suppose that no removable direction can be found from
the cube map. This happens when the access direction and
the graspable point have been verified but the gripper cannot
remove the object along any direction. In such a case, the next-
best graspable point is selected, according to the cost function
discussed in Section 5. With the newly selected graspable point,
the stage for computing the removal directions is resumed,
i.e. the gripper is placed at the new graspable point to make
a distinct grasp pose, and the Minkowski sum of the object and
the gripper is projected to the cube map to find the removal
directions.

If the number of points in the point clouds is too large,
Minkowski sum projection may consume a significant amount
of time. In such a case, not the points themselves, but the
obstacle cells are used for computing the Minkowski sum, in
order to achieve real-time performance. According to the cell
size, the combination of the object and gripper is scaled up
to make O ′. The union of −O ′ located at each cell’s center
ci defines the Minkowski sum, and the removal directions are
computed by projecting the Minkowski to the cube map. (The
Minkowski sum in Fig. 13 has been constructed in this way.)
In this approximate approach, the selected removal direction
requires verification to ensure that it is collision-free. The
verification is done through the visibility query. The visibility
test presented in Section 5 is used, where the gripper is replaced
by O (the combination of the object and gripper), and the
viewing direction is set to the opposite of the selected removal
direction.

Instead of the cube map, the environment map can be
implemented as a sphere map, which is a 2D representation of
the full 360◦ view of the scene surrounding an object, as if taken
through a fish-eye lens [31]. Considering that only the obstacle
cells ‘within the locality sphere’ are used for Minkowski sum
generation, the sphere map might look like a better choice than
the cube map. Note that, however, the cube and sphere maps
are just different tools for the same purpose, i.e. they describe
the scene surrounding an object. Furthermore, the cube map
is easier to implement than the sphere map. Therefore, the
environment map is implemented as a cube map in the current
study.

7. Discussions

In the current study, the elastic strip method is used
for general motion planning, and is accelerated by gripper
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(a) Gripper at the grasp pose. (b) Minkowski sum.

(c) Minkowski sum projected
onto cube map.

(d) Unfolded cube map.

(e) Removal direction.

Fig. 13. Projection of Minkowski sum.

accessibility analysis (discussed in Section 5) and object
removability analysis (discussed in Section 6) within the
locality sphere, as illustrated in Fig. 5. The accessibility
analysis is used to determine the set of all collision-free linear
paths of the gripper from the access poses to the grasp poses.
Without accessibility analysis, the elastic strip-based motion

planner will run a trial-and-error-based loop to find a collision-
free grasp pose. For a sampled contact point, computing a
collision-free grasp pose is expensive when implemented in
software. Due to obstacles in cluttered environments, a trial
may also easily fail. Then, the motion planner should select
another contact point and the expensive computation will be
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Table 1
Performance measurement in Robot Café scene (ES: Elastic Strip)

Accessibility
analysis

Start pose →

access pose
Access pose →

grasp pose
Removability
analysis

Grasp pose →

delivery pose
Delivery pose →

goal pose
Total time

ES + spatial
reasoning

0.0038
0.375 1.188

0.022
1.188 0.359

3.136
1.563(0.375 + 1.188) 1.547(1.188 + 0.359)

ES only NA
3.015 (best case)

NA 23.158
26.173 (best)

4.852 (worst case) 28.010 (worst)

Number of total obstacle cells = 348; radius = 25 cm; number of obstacle cells inside/outside the locality sphere = 348/0.

repeated until it finds a graspable point. This kind of repeated
loop may often hinder real-time planning, as is demonstrated
in Section 8. Worse still, even if a collision-free grasp pose
is computed, the motion planning from the access pose to
the grasp pose may consume a significant amount of time in
cluttered environments. Worst of all, a collision-free path to
the computed grasp pose may not exist, due to the obstacles
on the way to the grasp pose. Then, the whole planning must
be repeated by computing another collision-free grasp pose.
In the case of probabilistic approaches, the trial-and-error can
be eliminated by examining multiple grasp points in the query
phase of the algorithm. However, it increases time needed to
generate a satisfactory roadmap that can be connected to the
multiple grasp points.

As the accessibility analysis is done not for the entire arm,
but for the gripper, motion planning is invoked to generate the
collision-free path for the rest of the robot arm while the gripper
is restricted to travel along the access direction. In the elastic
strip method used for the current implementation, the linear
path from the access pose to the grasp pose (computed for
the gripper) is taken as an input candidate path. The planned
path of the rest of the arm may be curved, and more precisely,
consists of multiple line segments, while the gripper path is
restricted to be linear. Note again that the collision-free path
of the gripper is guaranteed by accessibility analysis, while that
of the rest of the arm is guaranteed by the motion planner.

The accessibility analysis runs quickly, as shown in
Section 8. Skipping of motion planning for the gripper greatly
increases the efficiency of the elastic strip motion planning.
This is because motion planning for the gripper, which is the
closest part of the robot to the cluttered environment, is the
most time-consuming component. This complex component
has been replaced by a simple and fast accessibility analysis.

Similar discussions can be made for the removal directions.
From the grasp pose to the delivery pose, the collision-free
path of the gripper is guaranteed by the removability analysis
presented in Section 6. Therefore, while the gripper is restricted
to travel along the removal direction, motion planning is
invoked for the rest of the arm. This greatly increases efficiency.

In many areas of computer graphics field, there have
been conflicts between object-space approach and image-
space approach. In the visible surface determination area, for
example, the z-buffer algorithm discussed in Section 2 is an
image-space approach while depth sorting and bsp (binary
space partitioning) algorithms [32] represent the object-space
approach. Both of the accessibility analysis based on visibility
query and the removability analysis based on the cube map

are image-space algorithms. They run quite fast, especially
because they are implemented in GPU. On the other hand,
a common problem of the image-space approach is that its
effectiveness is limited by the image-space resolution and it
may be exposed to sampling error. In the proposed approach,
various safeguards have been devised, such as the conservative
obstacle representation discussed in Section 3, but the image-
space algorithms for accessibility/removability analyses may
not be completely free from the sampling error. The research
work presented in this paper pursues a trade-off between
efficiency and accuracy.

8. Experiments

The experimental mobile manipulator consists of a 7-DOF
Amtec lightweight arm (Amtec Robotics GmbH) with a parallel
jaw gripper installed on top of an Active Media Robotic’s
Powerbot. The algorithms presented in this paper have been
implemented on a modest PC (Pentium 4 2.8 GHz, and
NVIDIA GeForce 6600GT graphics card). Fig. 14 shows a
series of snapshots for the manipulation task, in which the
robot is requested to grasp a pizza sauce bottle in Robot
Café. Fig. 15 shows the corresponding scenes generated by
simulation. Fig. 14(a) shows the start pose, where the images
of the workspace are captured and its computer model is
constructed. Fig. 14(b) shows the access pose from which
a translation motion toward the grasp pose is performed.
Fig. 14(c) shows the grasp pose. The obstacles including the
banana in front of the pizza sauce bottle do not allow the
bottle to be removed horizontally. Similarly, the flower above
the bottle does not allow vertical motion. Fig. 14(d) shows
the collision-free removal operation, toward the delivery pose,
computed using the cube map. Finally, Fig. 14(e) shows the
goal pose.

Table 1 compares the performances of motion planning
(elastic strip: ES) with and without spatial reasoning for the
environment shown in Fig. 14. In this experiment, the spatial
reasoning for accessibility analysis requires 0.0038 s, and
motion planning from the start pose to the grasp pose takes
1.563 s. Without accessibility analysis, the motion planner takes
3.015 s in the best case and 4.852 s in the worst case. Recall that
the bottle has 4 contact curves and each curve is sampled at 10
points, i.e. 40 contact points are tested in total. The best case
occurs when the motion planner selects the top of the object
for grasping at the first trial, the collision-free grasp pose is
obtained, and finally the collision-free path from the start pose
to the grasp pose is found. However, it takes more time than
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Fig. 14. Snapshots of experiment I. Fig. 15. Simulation scenes of experiment I.
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Fig. 16. Obstacle cells for varying radii of the locality sphere.

when the motion planner is accelerated by spatial reasoning,
i.e. 3.015 vs. 1.567 (0.0038 + 1.563) s. The worst case occurs
when the motion planner obtains a collision-free path after
trying many contact points, to which no path from the start pose
can be found.1

1 To determine a collision-free grasp pose, the motion planner checks if
the given contact point is reachable by the arm. If the contact point can be
reached, the arm is tested for collision with the obstacles at the grasp pose.
In the experiments, the back face of the bottle is not reachable, and therefore
all contact points at the back face are immediately rejected. The sides of the
object are reachable, but are rejected by the collision test, which is also fast. No

The spatial reasoning for removability analysis requires
0.022 s, and the whole motion planning from the grasp pose to
the goal pose takes 1.547 s. Without removability analysis, the
motion planner takes 23.158 s to generate a collision-free path.
The obstacles surrounding the target object, such as banana,
flower, etc., result in the planner consuming a large amount
of time. Note that, in generating the entire path from the start
pose to the goal pose, motion planning with spatial reasoning is
approximately 9 times faster.

The radius of the locality sphere determines the length of
the linear path along which the gripper travels. Depending on
the dexterity and manipulability of the arm and characteristics
of the gripper, the radius of the locality sphere can vary. For
a dexterous arm, the radius can be minimized, e.g. the gripper
length plus half the target object’s width. The limited dexterity
of the arm requires a larger radius of the locality sphere. The
robot arm shown in Fig. 1 has limited dexterity, and the sphere
radius is made large enough to include as many obstacles
immediately neighboring the target object as possible. See
below for a more detailed discussion.

Table 2 shows the performance measurement with varying
radii of the locality sphere for the environment of Robot Café.
As the radius increases from 10 to 25 cm, the number of
obstacle cells within the locality sphere also increases from 41
to 348, as also illustrated in Fig. 16. Obviously, more obstacle
cells lead to less graspable points, and the number of graspable
points is reduced from 29 (at 10 cm) to 2 (at 25 cm). The
remaining columns of Table 2 show the times required for
spatial reasoning and motion planning, and are illustrated in
Fig. 17. They can be discussed as follows:

– The accessibility analysis time remains almost constant even
though the number of obstacle cells increases as the radius
of the locality sphere increases. This is due to the fact that
GPU’s visibility query is rarely sensitive to the size of the
input data.

– From the start pose to the access pose, the motion planning
time sharply decreases when the radius of the locality sphere
increases from 10 to 15 cm and finally to 20 cm. This is
because the number of obstacle cells outside the locality
sphere rapidly drops from 307 to 128, and then to 12. In other
words, the area in which the general motion planner needs to
operate becomes less crowded. In contrast, the planning time
does not greatly decrease, from 20 to 25 cm, because just 12
obstacle cells disappear.

– From the access pose to the grasp pose, the time for motion
planning accelerated by spatial reasoning remains almost
constant. This is because the general motion planning for
the ‘rest’ of the arm, i.e. the part of the robot arm excluding
its gripper, considers not only the obstacle cells inside the
locality sphere but also the outside cells. In other words, the
number of obstacle cells to consider is largely independent
of the locality sphere’s radius.

– The removability analysis time is not much affected by
the number of obstacle cells within the locality sphere.

path planning is invoked for the back and side faces. Thus, the time difference
between the worst case (4.852 s) and the best case (3.015 s) is not so big.
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Table 2
Performance measurement for varying radii of the locality sphere

R Obstacle
cells (in/out)

Graspable
points

Accessibility
analysis

Start pose →

access pose
Access pose →

grasp pose
Removability
analysis

Grasp pose →

delivery pose
Delivery pose
→ goal pose

Total
time

10 41/307 29 0.0037
1.968 1.204

0.021
1.171 1.985

6.353
3.172 3.156

15 220/128 7 0.0037
1.079 1.171

0.022
1.178 1.072

4.526
2.250 2.250

20 336/12 3 0.0038
0.407 1.202

0.022
1.196 0.391

3.222
1.609 1.587

25 348/0 2 0.0038
0.375 1.188

0.022
1.188 0.359

3.136
1.563 1.547

Table 3
Performance measurement in the table scene (ES: Elastic Strip)

Accessibility
analysis

Start pose →

access pose
Access pose →

grasp pose
Removability
analysis

Grasp pose →

delivery pose
Delivery pose →

goal pose
Total time

ES + spatial
reasoning

0.0033
0.297 0.921

0.022
0.922 0.291

2.456
1.218 1.213

ES only NA
2.433 (best case)

NA 22.184
24.617 (best)

3.602 (worst case) 25.786 (worst)

Number of total obstacle cells = 327; radius = 20 cm; number of obstacle cells inside/outside the locality sphere = 327/0.

Fig. 17. Execution times for varying radii of the locality sphere.

This is because the GPU operations run quite fast and are
rarely sensitive to the size of the input data while the CPU
operations dominate the time which is fairly constant.

– From the grasp pose to the delivery pose, the motion
planning time remains almost constant for the same reasons
explained above for the sub-path from the access pose to the
grasp pose.

– From the delivery pose to the goal pose, the planning time
sharply decreases and then flattens for the same reasons
explained above for the sub-path from the start pose to the
access pose.

Table 2 shows that the total planning time decreases as the
radius increases. This justifies why the radius of the locality
sphere is made large enough to include as many obstacles as

possible. Note that, however, we often cannot find a graspable
point for an overly large radius. This happens when no clear
linear path of the gripper can be found due to the crowded
obstacles. Even though a long linear path is found, following the
linear path of the gripper puts too many constraints on the robot
arm and consequently a motion plan for the entire arm may not
be found. Therefore, we need an upper limit of the radius, and it
is set to 30 cm in the current implementation. Within the upper
limit, the smallest radius that contains the maximum number of
the obstacle cells is selected, at intervals of 5 cm. In Table 2,
for example, such a radius is 25 cm. When no graspable point
is found in the radius, we reduce the radius by 5 cm at a time,
and repeat the accessibility analysis.

Figs. 18 and 19 show demonstrations for another
target object, a juice bottle, in a different environment.
Table 3 compares the performances of motion planning with
and without spatial reasoning, and also shows significant
performance gain of the proposed spatial reasoning.

Fig. 20 shows a more cluttered environment, where the
juice bottle is the target object, and Fig. 21 shows a series
of snapshots for the manipulation task. Table 4 compares
the performances. In such a cluttered environment, the
disadvantage of motion planning without spatial reasoning
is obvious due to the higher possibility of falling into local
minima. In Table 4, the object removal task (from the grasp pose
to the goal pose) consumes a huge amount of time, 45.485 s, and
eventually realizes the existence of the local minimum,2 i.e. no
path is found.

2 The motion planner can use a local minima escape method, such as random
walk, to try to generate a path. If the motion planner is lucky, the planner may
select a collision-free path in its first trial and succeed. However, there is no
upper bound for the time needed to find a collision-free path.
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Fig. 18. Snapshots of experiment II. Fig. 19. Simulation scenes of experiment II.
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Fig. 20. Workspace for experiment III.

9. Conclusion

This paper presents a novel approach to accessibility and
removability analyses for object manipulation tasks: visibility-
based spatial reasoning. The accessibility and removability
analyses utilize the visibility query and cube map, which
are accelerated by graphics hardware. The performance and
robustness of the proposed approach are evaluated in cluttered
indoor environments. The experimental results demonstrated
that the proposed methods are sufficiently fast and robust to
manipulate 3D objects for real-time robotic applications.

As shown in the experimental results for the varying
radii of the locality sphere, the spatial reasoning for
accessibility/removability analyses is largely independent of
the locality sphere’s radius and runs very fast. Consequently,
multiple access and grasp poses associated with different radii
can be generated very fast. Similarly, we can obtain multiple
delivery poses for different radii of the locality sphere. In the
context of real-time motion planning, our next step is to develop
a probabilistic motion planner that can process such multiple
initial and goal configurations at once. This approach may
increase the chance of finding a better path in real time.

In the context of the home service robot, the objects to
be manipulated are limited to daily necessities. Fortunately,
their shapes are mostly symmetric, and simple objects such
as boxes and bottles constitute the majority. It is simple to
construct a database for such simple-shaped and symmetric
daily necessities. The proposed approach will be extended to
enable one to deal with a wider range of objects with arbitrary
silhouettes. For such an extension, the proposed framework
can be used without alteration. However, the authoring stage
for object database construction is becoming increasingly
complicated, and a more general representation for contact
points is being investigated. Fig. 21. Snapshots of experiment III.
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Table 4
Performance measurement in the refrigerator scene

Accessibility
analysis

Start pose →

access pose
Access pose →

grasp pose
Removability
analysis

Grasp pose →

delivery pose
Delivery pose →

goal pose
Total time

ES + spatial
reasoning

0.0043
0.430 2.210

0.027
2.218 0.438

5.327
2.640 2.656

ES only NA
3.767 (best case)

NA 45.485 NA
9.860 (worst case)

Number of total obstacle cells = 522; radius = 30 cm; number of obstacle cells inside/outside the locality sphere = 521/1.
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