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Abstract This paper presents a high-quality high-perfor-
mance algorithm to compute plausible soft shadows for
complex dynamic scenes. Given a rectangular light source,
the scene is rendered from the viewpoint placed at the cen-
ter of the light source, and discretized into a layered depth
map. For each scene point sampled in the depth map, the
occlusion degree is computed, and stored in a layered oc-
clusion map. When the scene is rendered from the camera’s
viewpoint, the occlusion degree of a scene point is computed
by filtering the layered occlusion map. The proposed algo-
rithm produces soft shadows the quality of which is quite
close to that of the ground truth reference. As it runs very
fast, a scene with a million polygons can be rendered in real-
time. The proposed method does not require pre-processing
and is easy to implement in contemporary graphic hard-
ware.

Keywords Soft shadow algorithm - Image processing -
Hardware accelerated rendering - Real-time shadowing

1 Introduction

Shadows increase the realism of rendered images, and help
us understand the spatial relationships among objects in a
scene. Two seminal works in shadow generation are shadow
volume [7] and shadow mapping [29]. The shadow volume
is an object-space technique. It describes the 3D volume oc-
cluded from a light source, and determines if a pixel to be
rendered is within the volume. In contrast, shadow mapping
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is an image-space technique. It tests if a pixel to be rendered
is visible from the light source, using a depth image from
the viewpoint of the light source, stored in a texture named
shadow map.

The two original works assume a point light source, and
generate hard shadows where a point in the scene is either
fully lit by or fully occluded from the light source. How-
ever, area or volumetric light sources in the real world gener-
ate soft shadows, where a penumbra region lies between the
umbra (fully occluded) region and the fully lit region. For
decades, the shadow volume and the shadow mapping tech-
niques have been extended to generate soft shadows, and
many real-time algorithms have been proposed.

Recently, many of the shadow mapping algorithms for
soft shadow generation have pursued a common technique.
The shadow map is viewed as a discrete representation of the
scene, and each sample in the map is considered as a micro-
patch. To determine the percentage or degree of occlusion at
a point, the micro-patches selected as the potential occluders
are back-projected from the point to the light plane, and the
overlapped area is computed [4, 14].

This paper presents a high-quality high-performance al-
gorithm along the lines of the micro-patch projection ap-
proach. Given a light source, the scene is rendered from the
light source’s viewpoint, and discretized into a layered depth
map. (The layered depth map was initially proposed for ren-
dering transparent objects [10].) For each scene point sam-
pled in the layered depth map, the occlusion degree is com-
puted through back-projection, and stored in the so-called
layered occlusion map (LOM). When the scene is rendered
from the camera’s viewpoint, the occlusion degree of a scene
point is computed by filtering the LOM.

The LOM presented in this paper is constructed using
the layered depth map and micro-patch back projection al-
gorithm. The proposed method produces soft shadows, the
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quality of which is quite close to that of the ground truth
reference. It runs very fast such that a scene with a million
polygons can be rendered in real-time.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 presents how to con-
struct the layered depth map and the LOM, and Sect. 4
presents how to render the shadowed scene using the two
maps. Section 5 discusses various optimization techniques
used to construct the maps. Section 6 presents the imple-
mentation details, and Sect. 7 reports the experimental re-
sults. Section 8 compares the proposed method with existing
work, and finally Sect. 9 concludes the paper.

2 Related work

An exhaustive survey of the numerous shadow algorithms is
beyond the scope of this section; readers are referred to Woo
et al. [31] for a comprehensive survey on hard shadows, and
Hasenfratz et al. [16] for soft shadows. After briefly review-
ing the shadow volume approach and a recently proposed
algorithm based on the pre-computed shadow fields, we will
focus on the shadow mapping algorithms closely related to
our method.

The shadow volume approach [7] has been extended to
produce soft shadows. Akenine-Moller and Assarsson [2]
construct a penumbra-wedge per silhouette edge which is
seen from the light source center. The penumbra-wedges
are back-projected to the light source plane to accumulate
the occluded area of the light source. Laine et al. [19] com-
bine penumbra-wedges with ray tracing for planar area light
source. Forest et al. [12] use penumbra-wedge to identify
the visible surface points in the penumbra region. The vis-
ibility of the light source from a surface point is computed
using the depth complexity between the point and a set of
light samples. Recently, Forest et al. [13] propose a soft tex-
ture shadow volume to produce soft shadows for perforated
triangles.

Sloan et al. [27] proposed to pre-compute radiance trans-
fer for realtime rendering of low-frequency lighting by using
a spherical harmonic basis to store the pre-computed light
transport at every point in the scene. Zhou et al. [33] pro-
posed to construct shadow fields around each single object
which can be pre-computed independently of the scene con-
figuration. This approach has been extended by [18, 20] to
interactively render a dynamic scene in realtime.

Shadow mapping was introduced by Williams [29]. The
scene is rendered from the light source’s viewpoint, and its
depths are computed and stored in the shadow map. Hard
shadows are produced by transforming each screen-space
pixel to the light space and then comparing its depth to the
one in the shadow map. If the pixel depth is greater than the
stored one, it is determined to be occluded from the light.
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Following the seminal work of Williams, many algo-
rithms have been presented to make soft shadows by extend-
ing the shadow mapping technique. Reeves et al. [21] pro-
posed the percentage closer filtering (PCF) method to soften
the hard shadow edges. Multiple sampling of the shadow
map is performed around the pixel to be rendered, and the
results are compared to the point’s depth, as in conventional
shadow mapping. The binary values are filtered to give the
approximate visibility of the point. Fernando [11] extended
the PCF method. Given a pixel to be rendered, the depth
map is searched for its potential occluders, and the average
of their depths is computed to determine the kernel size. PCF
is applied to the kernel to approximate the pixel’s visibility.

Heidrich et al. [17] produced soft shadows of a linear
light source by sampling it at two endpoints. For each light
sample, a soft shadow map is computed that consists of a
conventional depth map and a visibility map. The visibility
map at one light sample is computed by warping the triangu-
lated depth points from the other light sample’s depth map
to its viewpoint. The soft shadows are produced by summing
the two visibility maps. Agrawala et al. [1] processed a set
of samples of an area light source, and generated a depth
map for a sample. All points in the depth maps are warped
into the viewpoint located at the light source center. Those
points are added into a multi-layer buffer, called the layer
attenuation map, which contains depth and visibility infor-
mation. The visibility at a point is computed by counting the
number of visible light samples from the point. When ren-
dering the scene from the camera’s viewpoint, a scene point
is transformed to the light space with respect to the light cen-
ter, and the layer attenuation map is searched to obtain the
visibility of the point.

Arvo et al. [3] detected the hard shadow boundaries,
in the screen space, that also store occluder information
from the depth map. A modified flood-fill method is used
to expand the penumbra regions from the boundaries. This
method heavily depends on the number of flood-fill steps.
Rong and Tan [22] improved the work of Arvo et al. by
proposing a quick flood-fill method ending in a few steps.
Initially, a large kernel is used to spread out the occluder
information from the boundaries. Then smaller kernels are
used in an iterative fashion to correct the occluder informa-
tion of a pixel in the penumbra.

Eisemann and Décoret [9] rendered the scene into a
multi-sliced shadow map. Each slice of the shadow map is
pre-filtered. In the final rendering step, the visibility of a
scene point is computed from the filtered slices using a prob-
abilistic approach. Their algorithm is sensitive to the slice
positions, i.e., where to place the slices.

Drettakis and Fiume [8] proposed a backprojection data
structure to represent the visible portion of a light source
from any point in the scene. Since then, many algorithms
have extended the idea: the shadow map samples are con-
verted into micro-patches, and then back-projected to the
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light source plane [4-6, 14]. The idea of the micro-patch has
also been extended into more complicated geometries, such
as micro-quads [23], micro-rects [25], and micro-tris [24].

Atty et al. [4] processed a micro-patch at a time to com-
pute the region of the soft shadow map, affected by the
micro-patch. For each pixel in the region, the micro-patch
is back-projected to the light plane, and the occlusion de-
gree is computed. The process is done for all micro-patches,
and the occlusion degrees are accumulated into the soft
shadow map. Finally, the soft shadow map is projected onto
the scene to produce soft shadows. This algorithm distin-
guishes between occluders and receivers, and thus cannot
produce self-shadows. Another disadvantage of the algo-
rithm is that the shadow map (occluder map) generated by
GPU is read back to the CPU that then invokes the GPU
for back-projection. The communication between CPU and
GPU degrades the rendering performance.

Guennebaud et al. [14] took a similar approach, but back-
projection was done from a screen-space pixel. Given a
pixel, the shadow map is searched for the samples working
as the potential occluders. They are back-projected into the
light plane. The algorithm proposed to extend the sample
sizes to overcome the light leaking problem caused by the
discrete nature of the shadow map. However, the solution
often leads to over-shadows.

Guennebaud et al. [15] improved the shadow quality by
detecting local contour edges at texel level of the shadow
map. Given a pixel of the screen space, the shadow map
samples working as the potential occluders are identified,
as was done in the previous work [14]. Instead of back-
projecting each sample in the micro-patch form, however,
a local contour edge is back-projected to the light source
plane. The back-projected edge is clipped by the borders
of the light source, and the occluded area associated with
the edge is computed and accumulated. Then, the occlu-
sion degree of the current pixel is computed. Yang et al.
[32] adopted the technique of contour edge back-projection,
and proposed a so-called packet-based method, where a set
of screen-space pixels is processed simultaneously. The op-
erations of shadow map access and contour extraction are
performed with respect to the set. Exploiting the penumbra
coherence between the adjacent pixels leads to the perfor-
mance increase.

The layered depth map was proposed by a few algo-
rithms [5, 6, 23], to reduce the light leaking and over-shadow
problems; and the goal of reducing the artifact was largely
achieved. Like the work of Guennebaud et al. [ 14], however,
these techniques process the screen-space pixels. As a result,
the performance of the algorithm is sensitive to the percent-
age of the penumbra pixels in the screen. When the penum-
bra pixels take a larger part of the screen, performance drops
significantly because more samples in the depth map should
be processed. Guennebaud et al. [15] alleviated this limita-
tion using a pre-computed pattern to skip some screen pixels
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Fig. 1 Multiple layers of depths in a scene

falling in a large penumbra region. The visibility values of
the skipped pixels are computed by interpolating the visibil-
ity values of the processed pixels. Yang et al. [32] proposed
to use more samples of the light source to reduce the artifact
caused by a single sample.

The algorithm presented in this paper was inspired by the
work of Atty et al. [4], and proposed to remedy its weak-
nesses. The idea of the layered depth map was adopted for
this purpose. Unlike the prior work, back-projection is done
in the light space, not in the screen space, and a new tex-
ture storing the occlusion degrees for the multiple layers is
constructed. Final rendering of the scene is done by filter-
ing the texture, and therefore the rendering performance is
made largely constant, independent of the screen configura-
tion.

3 Depth map and occlusion map

Like the traditional shadow mapping technique, our method
is a two-pass algorithm: the first pass constructs a depth map
and an occlusion map from the viewpoint of the light source,
and the second pass renders the scene using the two maps
from the viewpoint of the camera. This section presents the
basics of the first pass, Sect. 4 presents the second pass, and
Sect. 5 presents the optimization techniques of the first pass.

Both the depth map and the occlusion map are multi-
layered or simply layered. The depth map discretizes the
scene, and the occlusion map stores the degree of light oc-
clusion per discretized scene point. Section 3.1 presents how
to construct the depth map, and Sects. 3.2 and 3.3 present
how to construct the occlusion map.

3.1 Layered depth map

We assume a rectangular light source. The viewpoint is
located at the center of the light source to construct the
depth map (Fig. 1). The scene is rendered in a layer-by-
layer fashion using the depth peeling method [10]. At the
first iteration, the scene is rendered normally with back-
face culling, and the depth values of the surfaces nearest to
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the light source are stored in the first layer. The first layer
contains the same information as the traditional shadow
map.

In the second iteration, the depths less than or equal to
those stored in the first layer are peeled away, and the second
layer is filled. This process is repeated until the entire scene
is discretized. Figure 1 shows four depth layers of a scene.

Multiple layers are packed in a texture such that a sam-
ple at (u,v) contains multiple depth values. A 4-channel
(RGBA) texture is sufficient to represent the depth map for
the scene in Fig. 1. If a scene requires more than four depth
layers, we may use additional textures. Even in such a case,
however, a single texture is sufficient in general, as will be
discussed in Sect. 5.1.

3.2 Collecting potential occludees

The layered occlusion map (LOM) is constructed using the
depth map. The two maps have the same structure, but
the depth map contains a depth value per discretized scene
point, whereas LOM contains its occlusion degree, which
represents how much of light is occluded. The occlusion de-

for each sample s of the depth map
Construct the micro-patches associated with s
Get the potential occludees using the micro-patch information
for each potential occludee
Compute the occlusion degree by back-projecting
the micro-patches

Fig. 2 Algorithm for LOM construction

gree is in the range of [0,1], where O denotes ‘fully lit’ and
1 denotes ‘fully occluded.’

Figure 2 shows the skeleton of the LOM construction
algorithm. The algorithm processes a sample of the depth
map at a time. The depth values are retrieved from a sam-
ple, and a rectangular micro-patch is placed at each depth
value. For some of the scene points discretized in the depth
map, the light rays from the light source may be occluded
by the micro-patches. Such scene points, called potential
occludees, are identified using the method presented in
this sub-section. Then, the occlusion degree is computed
for each potential occludee by back-projecting the micro-
patches, as presented in Sect. 3.3.

Figure 3(a) shows the umbra and penumbra volumes
caused by a micro-patch, which are collectively called the
shadow extent. Figure 3(b) shows two micro-patches, at
z1 and z», obtained from a sample of the depth map. For
the sake of computation, the micro-patch is assumed axis-
aligned with the rectangular light source. The shadow ex-
tent of the micro-patch at z; is included in that at z;. Given
a sample, the shadow extent of the micro-patch farther from
the light source is included in that of the closer. Therefore,
the potential occludees affected by a sample are all located
within the shadow extent of the sample’s micro-patch that is
closest to the light source.

Let us cut the shadow extent of the closest micro-patch
by a plane parallel to the micro-patch, as shown in Fig. 4(a),
to generate the shadow rectangle. When it is projected onto
the depth map that is placed at the near plane of the light
frustum, it is called the kernel. The kernel volume is bounded
by the kernel and the shadow rectangle. It is a superset of

light
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Fig. 3 Shadow extent: (a) a micro-patch generates a shadow extent
that includes both the penumbra and umbra volumes; (b) given a sam-
ple, the shadow extent of the farther micro-patch is included in that of
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Fig. 4 Kernel and back-projection: (a) the kernel volume is a superset of the truncated shadow extent; (b) the depth values are retrieved for each
sample contained in the kernel; (¢) back-projection with overlap; (d) back-projection with no overlap

the truncated shadow extent, and is searched for potential
occludees.

A set of samples is located within the kernel. For each
sample, we can retrieve a list of depth values. Suppose that,
in Fig. 4(b), s? is the sample under process. Its kernel, cen-
tered at s2, includes three samples: st 52, and s3. A list of
depth values is retrieved from a sample: {z{, z}, z3 } from s,
{z3, 22} from 52, and {23, z3} from s°. The scene points at
these depth values are the potential occludees of s2’s micro-
patches, and the occlusion degree will be computed for each
potential occludee.

It is simple to compute the kernel. In Fig. 4(a), O is the
apex of a triangular side of the truncated pyramid for the
shadow extent. The distance z’ from the light plane to O is
computed as follows:

St 1)
where z is the distance from the light plane to the closest
micro-patch, w and n are the width and distance of the light
frustum’s near plane, respectively, r is the resolution of the
depth map, and / is the width of the light source. Then, the
kernel width wy is computed as follows:

In(1 1 In /1 1 1 )
wk_w(z’_d)_w<z_d>+r’ @
where d is the distance from the light plane to the shadow
rectangle. The kernel width wy is computed separately for
each of the u- and v-directions of the depth map.

Recall that the shadow extent is cut by a plane to gener-
ate the shadow rectangle, and the distance d from the light
source to the shadow rectangle determines the kernel width
wg. Therefore, the position of the cutting plane has to be
chosen carefully. This issue will be discussed in Sect. 5.4.

3.3 Computing occlusion degrees

The pseudo code for LOM construction is shown in Fig. 5,
which is a detailed version of the algorithm presented in
Fig. 2. In the previous sub-section, we identified the poten-
tial occludees using the kernel, as illustrated in Fig. 4(b).
It corresponds to the first five lines of the pseudo code in
Fig. 5. This sub-section discusses the innermost for loop of
the pseudo code, i.e., for each potential occludee, we com-
pute the occlusion degree caused by all micro-patches of the
sample under process.

The micro-patches are back-projected from a potential
occludee to the light plane to compute the occlusion degree.
Figure 4(c) shows the result of back-projecting the micro-
patch of Z% from the potential occludee at Z}. The light
source and the projected image overlap, and therefore the
rays from the light source are determined to be partially oc-
cluded. The occlusion degree at z{ is determined using the
overlap area. Computing the overlap area is quite simple,
and readers are referred to [14].

The micro-patch of z% need not be back-projected to
compute the occlusion degree at z{, because z% is farther
from the light source than z{, and therefore the micro-patch
of z% cannot cast shadows to z}. Similarly, only the micro-
patch of z% is back-projected to compute the occlusion de-
gree of zé. In contrast, both micro-patches of z% and z% are
back-projected for zé.

After back-projection, we may have more than one
micro-patch that are overlapped with the light source. Then,
following the method proposed by Bavoil et al. [6], we
choose the one that is closest to the potential occludee under
process, and take its occlusion degree.

Now, consider {z?, z%} retrieved from s3. Neither z% nor
z% is closer to the light source than z%, and therefore no
micro-patch is back-projected. The occlusion degree at z?
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1: for each sample of the depth map

2 Retrieve the depth values z;s

3 Compute the kernel size

4: for each sample in the kernel

5 Retrieve the depth values z;s

6 for each potential occludee at a depth value z,

7 Compute the occlusion degree by back-projecting
the micro-patches at z;s

Fig. 5 Pseudo code for LOM construction

L I*layer light
) 2" ]ayer
3" layer
R st s’
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Fig. 6 LOM filtering: For a fragment p to be rendered, the depth map
and LOM are referenced and a depth-based tri-linear interpolation is
performed. (a) 2D illustration of the tri-linear interpolation; (b) p; is
processed by the basic tri-linear interpolation, p, and p3 are processed
with the aid of virtual bounds, p4 requires special handling of the oc-
clusion degrees to be interpolated, and ps shows an artifact that rarely
appears for a depth map of a reasonable size

is set to zero. With respect to z%, only the micro-patch of z%
is back-projected. However, there is no overlap between the
light source and the projected image, as shown in Fig. 4(d),
and the occlusion degree is set to zero.

Both of z? and z% are located outside the shadow ex-
tent, and cannot be occluded by all micro-patches of the
sample s2. They are collected as potential occludees be-
cause the kernel volume is a superset of the shadow extent,
as shown in Fig. 4(c). However, the occlusion degrees are
correctly computed and set to zero, through simple compu-
tation.

The same process is done for the depth values of the cur-
rent sample. In Fig. 4(b), the occlusion degree brought by
the micro-patch of z% is computed for z%. However, com-
puting the occlusion degree is not needed for the closest
depth z%.

Recall that the depth map and the LOM have the same
structure. For example, if z{ s z%, and z% are stored in the R,
G, and B channels of the depth map texture, respectively, the
occlusion degrees for them are also stored in the R, G, and
B channels of the LOM texture.
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4 LOM filtering

The filtering method we have adopted is depth-based and
follows a tri-linear interpolation. When the scene is ren-
dered from the viewpoint of the camera, each fragment is
transformed into the light space, and the four neighbor sam-
ples in the depth map are located. In the 2D illustration of
Fig. 6(a), s! and s are located for the fragment p. Its depth
value z is used to identify the bounding layers at each sam-
ple. For example, the first and second layers of s' bound p
because z} <z<z;. When the bounding layers are identified,
the LOM is searched for the occlusion degrees at the same
layers. (Recall that both the depth map and LOM have the
same structure.)

In Fig. 6(a), each scene point is described by a pair of its
depth and occlusion degree p. For s1, the distances, (z—z{)
and (z%—z), are used to interpolate ,011 and ,021 and deter-
mine p!. Similarly, p? is computed for s2. Finally, p!' and
p? are interpolated to determine the occlusion degree of p.
In Fig. 6(b), the occlusion degree of p; is computed using
the tri-linear interpolation.

However, the bounding layers are not always identified.
Consider the fragment p, in Fig. 6(b). With respect to s2,
the first layer is the lower bound, and there is no upper
bound. For such a case, a virtual bound, called the Oth layer,
is placed at the light source, and its occlusion degree is set
to O (fully lit).

On the other hand, consider p3 in Fig. 6(b). With respect
to s>, the second layer is the upper bound, and there is no
lower bound. For such a case, a virtual bound is placed at
the far distance of the light frustum, and its occlusion degree
is set to 1 (fully occluded). The occlusion degrees at p, and
p3 are computed through the tri-linear interpolation with the
aid of the virtual bounds.

Consider p4 in Fig. 6(b) that is obviously ‘fully oc-
cluded.” When the tri-linear interpolation is applied, how-
ever, ps will be determined to be ‘partially occluded’ since
the upper bounds along s and s> are fully lit, even though
the lower bounds are fully occluded. We check if the four
upper bounds are of the same layer, to handle such a case.
If so, our heuristic assumes that a surface patch connect-
ing the four points occludes light rays to the current frag-
ment. This is true for p4, where all the upper bounds belong
to the first layer. When all of the upper bounds belong to
a layer, their occlusion degrees are ignored, and instead 1s
(denoting ‘fully occluded’) are used for tri-linear interpola-
tion.

We have so far discussed the complete process of LOM
filtering. Unfortunately, the filtering method reveals a prob-
lem. Consider ps in Fig. 6(b), which is obviously fully lit.
Its upper bounds belong to the first layer, and their contri-
butions to the tri-linear interpolation are taken as 1s. Then,
the resulting degree of occlusion must be far from ‘fully
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Fig. 7 Layer visualization: The first row illustrates the layers in different colors, and the shadowed scenes are rendered at the second row

lit’ This error occurs, since ps is deeper than its upper
bound points, i.e., ps5 locates in a dent of the surface patch
connecting its upper bounds. Such a dent usually appears
when we use a coarse resolution for the depth map. As
will be discussed in Sect. 7.2, the 512 x 512-resolution
proves to be a good choice satisfying both the high frame
rate and visual quality. Fortunately, the artifact shown at
ps of Fig. 6(b) is hard to find in such a fine resolution,
since the surface patch tends to be planar and rarely has a
dent.

The depth peeling process presented in Sect. 3.1 samples
the scene in multiple depth layers. Two nearby samples of
a surface may be stored in different layers, and their occlu-
sion degrees may be stored in different layers of LOM. As
a result, a bi-linear filtering in the same layer often gives
incorrect results. This is why the tri-linear interpolation is
adopted in our method.

5 Optimization techniques
5.1 Number of depth layers

As discussed in Sect. 3.1, a single texture is sufficient for the
depth map of a scene with up to four layers, but additional
textures would be needed if a scene has more than four lay-
ers. This sub-section shows that, in general, a single texture
is sufficient even for the latter case.

Figure 7 visualizes the layers for four scenes, together
with their shadowed images. Layers 1, 2, 3, and 4 are col-
ored in green, blue, cyan, and yellow, respectively. The fifth
and deeper layers (denoted by 57) are colored in red. (Col-
ored in black are the back-faces.) Observe that, as we go
down the layers, the areas taken by the layers are signifi-
cantly reduced.

Note that the points on the first layer are either fully lit
(o = 0) or partially occluded. In contrast, the points on the
second or deeper layers are either partially occluded or fully
occluded (p = 1). Table 1 shows the percentage and aver-
age occlusion degree of the partially occluded points in the
second and deeper layers. In the robot scene of Fig. 7(a), for
example, 0.3% of the fifth and deeper layers’ points is par-
tially occluded (this implies that 99.7% is fully occluded),
and the occlusion degree of the points is on average 0.92. In
the scenes of Table 1, most of the points in the fourth and
deeper layers are fully occluded, and the occlusion degrees
are high even for the partially occluded.

Consider a point p on the fifth layer of the robot scene.
Suppose that p will be a discretized point in the depth map
if the depth map is extended beyond the fourth layer. How-
ever, a 4-channel texture is used, and therefore p is not dis-
cretized. Suppose that p happens to be a fragment to be ren-
dered in the screen. Then, its occlusion degree p is obtained
through the tri-linear filtering algorithm, and is 1 for almost
all cases.!

If the point p on the fifth layer is discretized, it will be
either partially occluded or fully occluded. Suppose that it
is fully occluded. Then, its occlusion degree p, computed
through the back-projection process will be 1. There is then
little difference between p, and p.

Conversely, suppose that p is partially occluded. Then,
po is not 1, and p can be taken as an over-estimation of p,.
However, such an over-estimation is not prominent due to

I'The upper bound lies at the fourth layer, and its occlusion degree is
1 with the probability of 98.1%, according to Table 1. In contrast, the
lower bound is virtual, and its occlusion degree is taken as 1. When
these two values are interpolated, the result is 1 for almost all cases.
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Table 1 Percentage and average occlusion degree of the ‘partially
occluded’ points in the second and deeper layers: The statistics are
obtained by discretizing each of the four scenes in Fig. 7 from ten

distinct light positions, and counting the non-NULL depth values in
each layer. The depth map resolution is 512 x 512

Layer Robot Dragon Drum Bunnies
Percentage Occlusion Percentage Occlusion Percentage Occlusion Percentage Occlusion
(%) degree (%) degree (%) degree (%) degree
61.1 0.84 59.3 0.87 65.2 0.87 66.0 0.84
3 13.3 0.86 12.2 0.84 6.8 0.83 55 0.88
1.9 0.90 39 0.86 1.1 0.86 1.4 0.94
5t 0.3 0.92 4.9 0.96 0.1 0.93 3.4 0.97
M Jayer 1 M layer 1
M layer?2 M layer2
layer 3 layer 3
layer 4 layer 4
B layer 5 B layer 5
B key receiver

a b

d

Fig. 8 The robot scene: (a) rendered with four layers; (b) reference image (1024 light samples); (c) rendered by specifying a key receiver;

(d) rendered by separating the receiver from the occluder [4]

the following: (1) the fifth and deeper layers take a small
fraction, as visualized in Fig. 7(a), (2) the partially occluded
points such as p take 0.3% even in the layers, and (3) the
amount of over-estimation is small because the correct de-
gree p, is also heavily occluded, on average 0.92. Such
a small over-estimation in an infinitesimal area is hardly
noticeable. We can make similar discussions for the other
scenes in Fig. 7 and Table 1. Our experiments in a variety of
scenes prove that a single texture is sufficient to discretize a
scene with little noticeable artifact. If we add more textures,
more computing time and memory are needed, but little gain
is obtained.
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5.2 Receiver specification

In virtual environments such as video games, some shadow
receivers such as floors and walls often play key roles in
helping us identify the spatial information of the scene be-
cause they usually take a large part in the scene and the shad-
ows are cast on them for a relatively long time. Suppose that
the number of depth layers is limited to four, and some pix-
els of such key receivers are over-estimated when rendered.
Figure 8(a) shows an example. Compare it to the reference
image in Fig. 8(b), which is rendered with 1024 point light
sources sampled from the area light. Even though the artifact
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A
gap

a p b P

Fig. 9 Light leaking problem alleviated using back-faces: (a) light
leaking; (b) use of the back-faces to reduce the light leakage

is hard to perceive, it would be desirable for it to disappear
because it is generated on the key receivers.

The key receiver is enforced to be discretized in con-
structing the depth map for this purpose. For example, the
floor in Fig. 8 is processed separately to generate a single-
layer depth map. Then, the remaining objects in the scene
are processed normally in the depth-peeling mode to con-
struct a three-layer depth map. Finally, the two maps are
packed in a four-layer depth map. Figure 8(c) shows the ren-
dering result using the combined depth map.

It is important to understand that unconditionally process-
ing such a key receiver in our method has little to do with
the traditional method of partitioning the scene into occlud-
ers and receivers. A good example showing the difference
is self-shadow or cast shadow among occluders; this cannot
be generated when the scene is partitioned into occluders
and receivers. The image in Fig. 8(d) is generated by the
algorithm of [4], where the robot is taken as the occluder,
and the floor is taken as the receiver. Note that, in Fig. 8(d),
self-shadow is not generated on the occluder.

5.3 Back-faces and optimal layer configuration

The gaps between the micro-patches may often result in
light leaking. For example, the point p in Fig. 9(a) receives
some light rays even though it is fully occluded in reality.
If the back-faces are used for computing the occlusion de-
gree, the light leaking problem can be greatly alleviated, as
illustrated in Fig. 9(b).

In the current implementation, the back-faces are stored
in a separate depth map, and are used only for computing the
occlusion degrees for the front-faces. (The front-face depth
map and the LOM have the same structure.) The occlusion
degrees need not be computed for the back-face points be-
cause they are always fully occluded.

For a deeper point in the scene, the light leaking prob-
lem is scarcely observed because multiple layers above it
usually close the gap. In our experiments, we observe that
light leaking mostly occurs on the second (front-face) layer.

1505
light

‘max

Zmax

Fig. 10 Kernel size reduction: Using zmax, the depth value of the deep-
est scene point, we compute wy. Within the kernel defined by wy, the
new deepest value zj,, is retrieved, and then the reduced kernel size
w), is computed. The hierarchical depth map aids this process

For a closed object, the first back-face layer lies between
the first and second front-face layers, and therefore greatly
contributes to reduce the light leaking problem.

According to our experiments, the best configuration of
the layers is set to the following: two or three front-face lay-
ers, one layer for the key receiver, and one back-face layer.
The first two are packed in the front-face depth map. In this
configuration, the light leaking problem has not been ob-
served.

5.4 Kernel size reduction

As discussed in Sect. 3.2 and Fig. 4, the shadow extent is
cut by a plane to generate the shadow rectangle. In (2), the
distance d from the light source to the shadow rectangle de-
termines the kernel width wy. The cutting plane’s position
should be correctly computed such that all of the potential
occludees affected by the currently processed sample are lo-
cated above it. Otherwise, some of the potential occludees
may be missing.

If the far plane of the light frustum is used as the cutting
plane, all of the scene points are considered and therefore
no potential occludee can be missing. However, it is an ex-
tremely inefficient method. The farther the cutting plane is,
the larger the kernel size is. The kernel size should be made
as small as possible to save the occlusion degree computa-
tion.

For the purpose of kernel size reduction, a hierarchical
depth map is constructed from the depth map. Level O of the
hierarchy is constructed by taking the largest (deepest) value
per sample. Then, 2 x 2 neighbors of level i are recursively
combined into a texel of level i 4+ 1 which stores the largest
of the neighbors. The top level of the hierarchy stores the
depth value of the deepest scene point. Let us call it zpax.-

Figure 10 illustrates the kernel size reduction process.
The initial kernel size wy is computed using (2) and Zmax-
Then, the level / to visit in the hierarchy is defined by
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Fig. 11 Sample grouping to reduce multiple fetches of a depth value:
The kernels of s> and s* share sample s2. When s> and s* are

grouped and processed at a time, the micro-patches at z? and z‘f are

back-projected from z% simultaneously. Grouping 2 x 2 samples leads

to around 25% performance gain due to the decreased number of tex-
ture fetches

[log, (wk)7, and the largest depth z,,,, is retrieved from the
four neighboring texels at level /. The cutting plane is moved
t0 Z]4x» and the new kernel size wy, is computed. The reduc-
tion step can be repeated but, in practice, a single step is
sufficient.

The hierarchy we have implemented is similar to that of
[14]. Some other methods such as [23, 25] provide more

precise results at the cost of more expensive computation.
5.5 Reduced texture fetches

A set of potential occludees affected by a sample is processed
at a time in constructing LOM. Note that adjacent samples
usually share some potential occludees. Figure 11 shows an
example. The kernels of s> and s* are {s!, 5%, 53, s*, 57}
and {s2, s3, 5%, 89, s6}, respectively. They overlap. For in-
stance, they share s2. Then, the potential occludee at z% will
be fetched twice if we process s> and s* separately. This is
inefficient. The texture fetch cost can be reduced by group-
ing s> and s*.

Let us construct a texture whose size is a quarter of the
original depth map by grouping the 2 x 2 samples. The new
texture stores the smallest depth value of the four samples,
e.g., z‘]1 in Fig. 11 when s and s* are grouped. (The smallest
is chosen because the micro-patch closest to the light source
produces the shadow extent encompassing all potential oc-
cludees.)

We then need small changes in the algorithm of Fig. 5.
The samples in the ‘new texture’ are processed one at a
time. However, the depth values associated with the origi-
nal four samples are fetched from the depth map, and their
micro-patches are computed. The kernel size is computed
using (2), where z and r are with respect to the ‘new texture,’
i.e., z is the smallest depth among the four samples, and r is
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Vertex shader
Retrieve the depth values z;s
Compute the kernel size

Geometry shader
Triangulate the kernel

Pixel shader
Retrieve the depth values z;s
for each potential occludee at a depth value z;
Compute the occlusion degree by back-projecting
the micro-patches at z;s

Fig. 12 Shaders for LOM construction

the reduced resolution. Finally, the micro-patches from the
four samples are back-projected for determining the occlu-
sion degree. In Fig. 11, for example, the micro-patches at
z? and z‘l‘ are back-projected from z% and accumulated to
determine the occlusion degree of z%.

We could choose to group 3 x 3 or larger samples, but
grouping 2 x 2 samples performs best. Grouping 2 x 2 sam-
ples leads to about 25% performance gain.

6 Implementation

Figure 12 shows how the LOM construction algorithm of
Fig. 5 is performed by the vertex, geometry, and pixel
shaders of the Shader Model 4.0. The vertex shader is in-
voked for each sample of the depth map, and performs two
tasks: (1) it retrieves the depth values z; s for the current sam-
ple and passes them to the pixel shader, (2) it computes the
kernel, i.e., wgs along u- and v-directions, using the algo-
rithms presented in Sects. 3.2 and 5.4.

The sample position and wys are passed to the geome-
try shader, which then converts the kernel quad centered at
the sample position into two triangles in a triangle strip. The
rasterizer produces the fragments of the triangles, that cor-
respond to the samples in the kernel. Each fragment goes
through the pixel shader, where the depth values z ;s for the
fragment are read out from the depth map, the micro-patches
are computed from the depth values z;s passed from the ver-
tex shader, and then the micro-patches are back-projected
from each z; to compute the occlusion degree.

We use a 16-bit RGBA floating-point texture for the
depth map, and a 32-bit RGBA floating-point texture for
the LOM. The pixel shader uses the 32-bit floating-point
hardware blending capability to accumulate the occlusion
degrees for a discretized scene point. This does not suffer
from the 16-bit blending accuracy, which Atty et al. [4] dis-
cussed thoroughly.
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7 Experimental results

The experiments were performed on an Intel Core2 CPU
1.86 GHz with an NVIDIA GeForce 8800 GTS graphics
card. The GPU code is in DirectX 10 and HLSL. All im-
ages were rendered in 1024 x 768 resolution.

7.1 Scene complexity

Figure 13(a) shows the result of rendering the dragon model
of 870K polygons using the proposed algorithm running on
512 x 512-resolution depth map and LOM. Two front-face
layers and a back-face layer are used for the dragon, and a
layer is assigned for the ground specified as the key receiver.
The proposed algorithm runs at 47 fps/footnote. The frame
rates reported in this section were measured for the entire
rendering process including the depth map and LOM con-
struction, soft shadow filtering, lighting and shading. Fig-
ure 13(b) shows the reference image rendered with 1024
point light sources sampled from the area light.

Figure 14 shows a series of scenes with increasing
complexity, and Fig.15 shows their frame rates. (The
texture resolution is 512 x 512.) This proves the proposed
method scales well with the scene complexity. The scene in
Fig. 14(d) has more than 1M polygons, and is rendered at
32 fps.

Fig. 13 Dragon of 870K polygons: (a) rendering result of the pro-
posed algorithm using 512 x 512-resolution maps (47 fps); (b) refer-
ence image (1024 light samples)

7.2 Texture resolution

In Fig. 16, the scene is rendered by changing the texture res-
olutions, i.e., the resolutions of the depth map and LOM.
The first row shows that the soft shadows become smoother
as the texture resolution increases. The second row shows
the difference images, which visualize the pixel-wise dif-
ferences between the images of the first row and the ref-
erence image. The pixel-difference is visualized as a gray
color, where a lighter pixel implies a larger difference. It is
obvious that the difference or error decreases as the texture
resolution increases.

Figure 17 illustrates the frame rates obtained by chang-
ing the texture resolutions. Together with Fig. 16, this shows
the tradeoff between the frame rate and the visual qual-
ity. As the bottleneck of the proposed method lies in LOM
construction, it is important to determine the LOM’s reso-
lution. Our experiments show that a 512 x 512-resolution
provides satisfactory results in both frame rate and visual
quality. As can be found in Fig. 16, the soft shadows in
the resolutions of 512 x 512 and 1024 x 1024 do not
make a big difference. More discussion on the relation be-
tween the texture resolution and frame rate will be given in
Sect. 7.3.

90

60 |-

Frame rate (fps)

4 5 6 7 8 9 10 11
Number of bunnies

12 13

Fig. 15 The frame rates with the varying number of bunnies in the
scenes of Fig. 14

Fig. 14 The bunny has 69K (69,451) polygons, and the terrain has 160K polygons: (a) 4 bunnies & 438K polygons in total (86 fps); (b) 7 bunnies
& 646K polygons in total (56 fps); (¢) 10 bunnies & 854K polygons in total (40 fps); (d) 13 bunnies & 1M polygons in total (32 fps)
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a b

Fig. 16 (First row) Soft shadows with the varying resolution of the
depth map: The soft shadows become smoother as the depth map
resolution increases. (Second row) Difference between the images of
the first row and the reference image: The pixel-difference is visual-

90 -

N
o
T

(9%
[e=]
T

Frame rate (fps)

0

0 128 256 512 1024

Depth map resolution

Fig. 17 The frame rates with the varying depth map resolution in the
scene of Fig. 16 (Dragon, 870K polygons)

7.3 Light source size

Figure 18 shows how soft shadows change when the light
source size changes. Even though our algorithm handles a
rectangular light source, for the sake of simplicity, we as-
sume a square light source with a side length of a. The
bounding box of the bunny model is computed, and the
longest edge of length b is selected. In Fig. 18(a), the ra-
tio of a and b is made 0.05, i.e., a/b = 0.05. It simulates
a point light source, and an almost hard shadow is gener-
ated. As a/b increases, the shadow becomes softer, i.e., the
penumbra area becomes larger.

If the size of the light source increases, the kernel size ac-
cordingly increases in our method, as can be noticed in (2).
The larger the kernel, the larger is the set of the potential
occludees. Therefore, more time is taken to construct the
LOM. Note that, however, the vertex and geometry shaders
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d

ized as a gray color, and the difference decreases as the depth map
resolution increases: (a) 128 x 128; (b) 256 x 256; (¢) 512 x 512;
(d) 1024 x 1024

Table 2 Performance comparison of three cases: I. (texture reso-
lution, light size) = (256 x 256, 0.5), II. (texture resolution, light
size) = (512 x 512, 0.5), and ITI. (texture resolution, light size) =
(512 x 512, 1). The row of ‘Depth map construction’ includes building
the hierarchy presented in Sect. 5.4, and the rendering time includes
LOM filtering as well as lighting and image texturing

I IT IIT
Depth map construction 1.01 1.67 1.67
LOM construction 1.48 5.32 11.24
Rendering 0.92 0.95 0.95
Total (ms) 341 7.94 13.86
fps 293.26 125.94 72.15

presented in Fig. 12 do the same work regardless of the light
source size. Only the pixel shader’s work increases.

Table 2 compares the performances of three cases with
different texture resolutions and light sizes, for the bunny
scene in Fig. 18. Compare Cases IT and ITI. When the
light size is magnified four times, the LOM construction
time increases about twice, not four times, because only the
pixel shader’s work increases. (Obviously, the depth map
construction time and rendering time do not change between
IT and IIT because the texture resolution is fixed.) Fig-
ure 19 shows the frame rates as a function of the light source
size in the test scene of Fig. 18 with the depth map resolution
of 512 x 512.

Let us now consider the relation between the texture res-
olution and frame rate. In Table 2, the texture resolutions
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a b

[ d

Fig. 18 The light source is square, and its side length is a. The bounding box is computed for the bunny, and the longest edge is of length b:
(a) a/b =0.05 (simulation of a point light source); (b) a/b = 0.25; (¢) a/b =0.5; (d) a/b =0.75
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Fig. 19 The frame rates with varying light source size in the scene
of Fig. 18

of Cases I and ITI are 256 x 256 and 512 x 512, respec-
tively. As expected, the LOM construction time increases
about four times when the texture resolution is changed from
256 x 256 to 512 x 512. In contrast, the depth map con-
struction time does not. It is because the depth map con-
struction time depends not only on the texture resolution but
also on the scene complexity, which is identical for Cases
I and II. Table 2 shows that, when the texture resolution
is magnified four times, the overall performance decreases
by about half. This observation is compatible with the graph
in Fig. 17.

The relationship between the light source size and the
texture resolution is worth noting. As shown in Fig. 16, the
difference or error is usually found in the penumbra area.
Note that a scene with a larger light source has a larger
penumbra area, where the error caused by the small texture
resolution is harder to observe. Therefore, a smaller resolu-
tion can be chosen for a larger light.

8 Discussion

Our method was inspired by the work of Atty et al. [4],
especially by the techniques of accumulating the occlu-
sion degrees and using two depth layers (front- and back-
face layers). However, our work is distinct in many aspects.
First, unlike the work of Atty et al. where the occluder and
the receiver are clearly separated and consequently no self-
shadow is generated, we do not distinguish between them,
and self-shadow is obtained. Such a difference was illus-
trated in Fig. 8. As presented in Sect. 5.2, a specific surface
can be designated as the key receiver, but its purpose is to
discretize and correctly shadow the surface. Both the key
receiver and the other objects can be self-shadowed in our
method.

Secondly, our method does not send data back to the CPU
and all computation is performed within GPU, whereas Atty
et al. [4] send the depth map to CPU and many drawcalls are
invoked, degrading the performance.

Thirdly, our method pursues a nearly-optimal layer con-
figuration: two or three front-face layers, one back-face
layer, and one layer for the key receiver, as discussed in
Sect. 5.3. Figure 20(a) shows the light leaking artifact of the
work of Atty et al., where the front-face and back-face depth
maps are constructed for the tree designated as the occluder,
and the floor is taken as the receiver. Compare this to our
result shown in Fig. 20(e), which adopts the nearly-optimal
layer configuration and therefore rarely reveals light leak-
ing. Our result is quite close to the reference image shown
in Fig. 20(f).

In general, the algorithms based on micro-patch back-
projection suffer from the light leaking artifact caused by
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d e

Fig. 20 Comparison of soft shadows: (a) light leak in Atty et al. [4]
at 12 fps; (b) over-shadow in Guennebaud et al. [14] at 27 fps; (c)
improved shadow quality and degraded fps in Guennebaud et al. [15]
at 16 fps; (d) compatible shadow quality and improved fps in Yang et

al. [32] (a single light sample) at 35 fps; (e) compatible shadow quality
and higher fps in our method at 46 fps; (f) reference image (1024 light
samples)
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Fig. 21 Performance comparison of our method (LOM), Atty’s soft shadow map method (SSM), and Guennebaud’s back-projection method
(Backprj) with the scene in Fig. 18 and texture resolution of: (a) 128 x 128; (b) 256 x 256; (¢) 512 x 512

the discrete nature of the depth map, as discussed in Sect. 2.
Our method alleviates this by pursuing a nearly-optimal
layer configuration. In contrast, the work of Guennebaud et
al. [14] adopted the so-called gap-filling method. Unfortu-
nately, this solution leads to the over-shadow artifact, as il-
lustrated in Fig. 20(b). Guennebaud et al. [15] proposed to
detect the shadow contours for improving the shadow qual-
ity, and Fig. 20(c) shows the result. However, it comes at the
cost of degraded fps.

Yang et al. [32] followed the approach of Guennebaud et
al. [15], but grouped a number of nearby pixels in the screen
space and processed the group at a time for the purpose of
improving performance. Figure 20(d) shows the result. Our
method in Fig. 20(e) shows a higher fps, and a reason is that
the penumbra coherence exploited in [32] is broken for the
scene of tree with foliage.
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Bavoil et al. [6] followed the framework of Guennebaud
et al. [14], and adopted multiple depth maps instead of gap
filling to avoid the over-shadow artifact. Their method can
produce better results, but performance is low especially
when the penumbra pixels take a larger part in the screen, as
discussed in Sect. 2. Like Bavoil et al. [6], our method also
used the layered depth map, but back-projection is done in
the light space, not in the screen space, to generate LOM,
and the LOM is filtered at the rendering time. As a result,
the rendering performance is made relatively constant, inde-
pendently of the screen configuration.

Figure 21 compares the performances of our method, the
work of Atty et al. [4], and the work of Guennebaud et al.
[14]. The work of Guennebaud et al. performs better than
the others when the light source size is kept small. It is be-
cause their work discards fully lit or fully occluded pixels,
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and processes only the penumbra pixels. When the light size
is small, the penumbra area is small, and therefore fewer
pixels are processed. When the light size increases, how-
ever, more pixels have to be processed, and therefore per-
formance degrades. Figures 20 and 21 show that, in general,
our method excels the others.

9 Conclusions and future work

In this paper, we presented a high-performance and high-
quality algorithm to produce soft shadows. The algorithm is
image-based, requires no pre-computation, maximally uti-
lizes the GPU, demands no CPU read-back, runs quite fast,
and generates self-shadows.

Although not physically correct, the resulting shadows
are close to those of the ground truth reference image. The
proposed method can be combined with some of the ad-
vanced shadow map techniques [28, 30] which enhance the
object discretization quality in the shadow map.

Using a fixed number of layers in the depth and occlusion
maps, we have obtained high-quality soft shadows, i.e., the
resulting artifact is hardly prominent. Nonetheless, there ex-
ists a possibility of further enhancing the proposed method
by using, for example, the shadow map list [26] in order to
complement the information for missing discretized points.
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