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Abstract Indirect illumination plays an important role in
global illumination. However, computing indirect illumina-
tion is a time-consuming process and needs to be approx-
imated to achieve interactive performance. Indirect illumi-
nation varies rather slowly across the surface. This leads to
the idea of computing indirect illumination sparsely in the
scene and interpolating the result. This paper presents a hi-
erarchical structure, which enables efficient sampling. The
hierarchy is constructed in the image space by exploiting
coherences among the screen-space pixels. From the hierar-
chy, samples are chosen, each of which represents a group of
coherent pixels. This paper presents two methods of utiliz-
ing the samples for indirect lighting computation. The meth-
ods produce plausible lighting results and show high perfor-
mances. The proposed algorithms run entirely in the image
space and are easy to implement in contemporary graphic
hardware.

Keywords Image-based algorithm · Indirect lighting ·
Global illumination

1 Introduction

Global illumination (GI) plays a key role in adding realistic
lighting to a 3D scene. With the increasing computing power
of GPUs, much attention has been directed to exploiting the
GPUs in order to achieve GI at interactive frame rates. In
general, some approximations are needed to achieve the in-
teractive GI.
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Indirect illumination varies rather slowly across the sur-
faces, especially the diffuse surfaces, and is view-independ-
ent. These features enable us to compute indirect illumina-
tion sparsely for the samples of the scene and then inter-
polate the results over the entire scene. This idea is widely
applied in irradiance caching [7, 9, 17, 20] and some image-
based lighting techniques [1, 12, 13].

This paper first of all proposes to compute the coher-
ences among the screen-space pixels. They are stored in a
data structure. It enables efficient identification of the sam-
ples for which indirect illumination needs to be computed.
Once indirect lighting is computed for every sample, the re-
sult is used for interpolation. For the purpose, this paper pro-
poses two methods: One computes samples at each frame,
and the other caches the samples from the previous frames
and reuses them in the subsequent frames.

2 Related work

A problem in GI is the high cost of computing indirect light-
ing. Approximation of the physically correct illumination
is usually needed. Sampling and interpolation are widely
adopted in GI based on the fact that lighting smoothly lays
down over object surfaces.

Ward et al. [20] introduced irradiance caching. This
method computes irradiance at the samples. Each sample is
defined with a radius indicating its influence region. Irradi-
ance at a point is interpolated from the irradiance at the sam-
ples if the point is in the influence regions of those samples.
Tabellion and Lamorlette [17] applied irradiance caching to
film production. Gautron [6] presented (ir)radiance cache
implementation on GPU through splatting samples into the
image space. Herzog et al. [7] introduced anisotropic cache
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splatting in the 3D object space. Debattista et al. [3] pro-
posed instant caching which is a combination of irradiance
caching and instant radiosity [8]. (Ir)radiance caching is also
extended to work with glossy surfaces [4, 9]. Most of these
methods add a new point to the cache whenever there is no
information to interpolate illumination on it from the previ-
ously computed samples in the cache.

Instant radiosity [8] computes single-bounce indirect
lighting using a set of virtual point lights (VPLs) which
are sampled from the visible surfaces seen from the light
source. Dachsbacher and Stamminger [1] proposed reflec-
tive shadow map that holds information for VPLs. The sam-
ples are chosen uniformly from a lower-resolution represen-
tation of the screen. The illumination at samples is gathered
from VPLs. Illumination at a screen pixel is computed by
interpolating nearby samples if it is coherent to those sam-
ples. Ritschel et al. [15] proposed imperfect shadow maps to
produce occlusion from VPLs. A crude point-based repre-
sentation of geometry is used to compute shadow map from
each VPL. The lightcuts framework [19] represents lighting
as a hierarchical collection of point lights. For each pixel
sample, it computes the pixel radiance by adaptively choos-
ing a subset of important VPLs. Recently, Ritschel et al.
[14] proposed to rasterize a hierarchy of point samples into
a micro-buffer to accelerate final illumination gathering.

Nichols and Wyman [13] detect mipmap-based dis-
continuities in the screen. Illumination at a point of a
discontinuous region is gathered from VPLs. Nichols et
al. [12] improve the work by using stencil-based multi-
resolution techniques, and also extended their work for dy-
namic area lighting [11]. The sample points are chosen
based on discontinuities, and there often exist too many sam-
ples. Consequently, the computation cost is increased at the
gathering stage.

Most previous methods detect coherences in object space
or discontinuities in image space. In contrast, our method is
image-based, and exploits the coherences among pixels in
screen space.

3 Hierarchical coherence buffer and samples

For rendering, the scene is transformed from the world space
to the screen space. Then various per-pixel attributes of
the visible surfaces, such as positions, normals, and mate-
rials, can be stored in an off-screen buffer named G-buffer
[16]. This section presents how to build a data structure that
stores the coherences among the screen-space pixels in the
G-buffer. It accelerates finding a group of samples, each of
which is a representative of a set of coherent texels.

3.1 Coherence measurements

Coherence between two texels in the G-buffer corresponds
to the coherence between two world-space points which

Fig. 1 Three types of coherence: (a) distance coherence; (b) normal
coherence; (c) pose coherence

are projected at the texels. Coherence between two world-
space points is measured using their positions and normals
[17, 18, 20]. Consider two points, a and b, in Fig. 1(a). They
are distance-coherent if they are within a pre-defined dis-
tance dmax:

‖a − b‖ ≤ dmax (1)

Let us denote the surface normals at a and b by na and
nb, respectively, as illustrated in Fig. 1(b). Two points are
normal-coherent if the normal divergence, θab, is less than
or equal to a pre-defined angle θmax. The condition for nor-
mal coherence can be redefined using the dot product of na

and nb:

na · nb ≥ cos θmax (2)

Now consider Fig. 1(c). Surface point a may contribute
to lighting at b that is located at a’s back side. Inversely,
lighting at a may be affected by b. This is often called back-
ward lighting. Let us connect a to b and denote the connect-
ing vector by

−→
ab. (The vector of the opposite direction is

denoted by
−→
ba.) We say b is pose-coherent to a if the fol-

lowing condition is satisfied:
⎧
⎨

⎩

−→
ab · na ≤ 0 or

−→
ba · nb ≤ 0

∣
∣−→ab · na

∣
∣ ≤ cosγmax

(3)

The first term tests for the presence of backward lighting,
and the second term uses a pre-defined angle γmax to restrict
the pose-coherent angles of backward lighting.

3.2 Hierarchical coherence buffer

We call the data structure storing the coherences among the
G-buffer texels the hierarchical coherence buffer (HCB). It
has a mipmap-like structure, where level k in the hierarchy
is of a quarter size of level (k − 1). The base level (level 0)
of the HCB is initialized to the G-buffer. Then the upper lev-
els are recursively constructed in a bottom-up fashion. See
Fig. 2. A texel located at (x, y) of level k holds the coher-
ence information of 3×3 child texels of level (k − 1), which
are located at (2x,2y) + (i, j), where i, j = {−1,0,1}.



Image-space hierarchical coherence buffer 761

Fig. 2 Hierarchically organized coherences. To compute information
of a texel at the coordinates (x, y) of level k, coherences are checked
within a 3×3 block of texels centered at (2x,2y) of level (k − 1). Not
only the coherences but also the position and normal data are stored at
each texel

Let us first present how the “normal coherence” is
recorded in the HCB. At level 0 of Fig. 2, consider the 3×3
texels centered at a and one of a’s neighbors denoted by
b. If (2) is satisfied, a and b are normal-coherent. If all
of the eight neighbors of a are normal-coherent to a, the
3×3 texel block is called group-coherent (more precisely,
group-coherent with respect to normals), and the minimum
of (na · nb)s is stored at level-1 texel a in the figure. It is the
least value of group coherence. On the other hand, if any of
the eight neighbors is not normal-coherent to a, the block
of 3×3 texels is not considered group-coherent, and zero
denoting ‘incoherence’ is stored at level-1 texel a.

Each texel of the HCB contains not only the coherence
information but also the position and normal of the corre-
sponding world-space point. For level 0 of the HCB, the
position and normal data stored at the G-buffer are simply
copied. For the upper levels, the position and normal stored
at the center of the 3×3 texel block at level (k−1) are copied
to level k. For example, in Fig. 2, the normal stored at level-
0 texel a is copied to level-1 texel a. Let us name it na .
To save the memory cost, the group coherence information
(either the minimum of (na · nb)s or zero) is stored at the
w-component of na at level 1, which we denote by nw

a .
Once all of the texels at level 1 are filled, we start to build

level 2. In Fig. 2, consider the 3×3 texel block centered
at a of level 1. We check the coherence between a and its
neighbors, one of which is denoted by c in the figure. Then
the group coherence information will be recorded at level-2
texel a. It is important to note that the group coherence we
want to measure is the one among the children of a and c at
level 0 because the level-2 texel a needs to store the coher-
ence information among all of its grandchildren at level 0.
Thus, we need to combine the group coherence information
stored at nw

a and nw
c . The next subsection presents a general

idea for combining them.

Fig. 3 Combining normal coherences

3.3 Combining normal coherences

Consider three points, p, q , and r , in Fig. 3. Assume that
p is found to be normal-coherent to q , i.e., θpq ≤ θmax (or
equivalently np · nq ≥ cos θmax). Now suppose that r needs
to be checked for normal coherence with both p and q but
is allowed to be compared with q only. Then a conservative
solution is to compute θqr , add it to θpq , and then compare
the sum with θmax. Let us denote θpq and θqr by α and β ,
respectively. Then the coherence condition among p, q , and
r can be listed as follows:
⎧
⎪⎨

⎪⎩

α ≤ θmax

β ≤ θmax

α + β ≤ θmax

(4)

Note that, given the last term, the second term is redundant
and can be deleted. Further, the first and last terms of (4) can
be rephrased as follows:
{

cosα ≥ cos θmax

cos(α + β) ≥ cos θmax
(5)

Assuming that the first term in (5) is satisfied for points
p and q , i.e., p and q are known to be normal-coherent,
only the second term defines the condition for point r to be
normal-coherent to both p and q .

Using the trigonometric cosine function, we can derive
the following from the second term of (5):

cosα cosβ ≥ cos θmax (6)

Equation (6) significantly reduces the computing cost. For
the last term of (4), we would have to compute the angle
β using inverse cosine function, i.e., β = cos−1(nq · nr).
For (6), it is replaced by cheaper dot product operation, i.e.,
cosβ = nq · nr .

Equation (6) asserts that determining the coherence of
{p,q, r} is reduced to checking the multiplication of the
known coherence of {p,q} and the newly-observed coher-
ence of {q, r}. Now suppose that another point s needs to be
checked for normal coherence with {p,q, r} but is allowed
to be compared with r only. Then cos θrs is set to the dot
product of nr and ns , and the following is tested:

(cosα cosβ) cos θrs ≥ cos θmax (7)
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where (cosα cosβ) represents the known coherence of
{p,q, r}.

3.4 Coherence exploitation

Using the idea presented in the previous subsection, the
problem raised in Sect. 3.2 can be solved, i.e., the group
coherence information stored at nw

a can be combined with
nw

c at level 1 (in Fig. 2). It is presented in the pseudo-code
of Algorithm 1.

Algorithm 1 HCB construction
INPUT: {a,na,n

w
a }, {ci, nci

, nw
ci

: i = 1..8}
coherence = nw

a

bCoherence = True
for i = 1 to 8 do

temp = nw
ci

∗ dot(na, nci
)

n_coherence = temp ≥ cos θmax

p_coherence = test_pose_coherence(a,na, ci, nci
)

if n_coherence == True and p_coherence == True
then

coherence = min(coherence, temp)

else
bCoherence = False

end if
end for
nw

a = (bCoherence == True) ? coherence : 0
OUTPUT: {a,na,n

w
a }

In Algorithm 1, cis denote eight neighbors of a. The
world-space normal and the group coherence information
of ci are denoted by nci

and nw
ci

, respectively. First, we
compute na · nci

, then multiply it with nw
ci

. This imple-
ments cosα cosβ in (6), where nw

ci
corresponds to cosα,

and na · nci
corresponds to cosβ . If nw

ci
(na · nci

) ≥ cos θmax,
ci ’s child texels are determined to be all normal-coherent to
a. Then an additional test for pose coherence is invoked. If
both normal and pose coherences are satisfied, ci is said to
be coherent to a.

The above procedure is applied to every ci . If all cis
are found to be coherent to a, the minimum of nw

a and
nw

ci
(na · nci

)s is selected, and stored at nw
a of level-2 texel a.

The position and normal of level-1 texel a are also copied to
level-2 texel a.

Algorithm 1 recursively constructs the HCB in a bottom-
up fashion, i.e., from level 1 to level 2, then from level 2
to level 3, and so on. Further, Algorithm 1 also constructs
level 1 from level 0. For this purpose, the w-component of
each texel’s normal is set to 1 at the base level of the HCB.

3.5 Distance accumulation

At the base level of the HCB, the distance of a texel is ini-
tialized to be the texel spacing in the world space. It is the
square root of the texel area back-projected to the world
space, i.e., the area that the texel covers in the world space.

While exploiting the coherences within a 3×3 texel
block, we also compute the accumulated distance. Suppose
that, at level 0 of Fig. 2, Ra and Rb denote the distances
stored at a and b, respectively. If b is found to be coherent
to a, we compute the distance R′

b = ‖a − b‖ + Rb . Let bis
denote the eight neighbors of a. If all bis are coherent to a,
the maximum among Ra and R′

bi
s is stored at level-1 texel

a. More specifically, it is stored at the w-component of a’s
position, which we denote by aw .

This process is done recursively, i.e., the distance for ev-
ery texel of level k is determined by accumulating the dis-
tances stored at the texels of level (k−1). Then, for texel a at
any level of the HCB, aw defines a sphere that encompasses
all the world-space points corresponding to the G-buffer tex-
els coherent to a.

3.6 Sample identification

Suppose that the HCB has been constructed. Then, for each
texel a of level k, nw

a holds the group coherence information
of 3×3 texels at level (k − 1). Recall that nw

a is positive if
the 3×3 texel block is group-coherent but is zero if the block
is not.

For identifying the samples for which indirect lighting
needs to be computed, the HCB is traversed from the top
level. During the top-down traversal, each texel is checked
to see if its coherence information is greater than zero. If
so, it is splatted into the 3×3 texels of the child level. This
is done recursively. The result of splatting at each level is
stored in a mask buffer which has the same structure as the
HCB. The texels in the mask buffer are classified as ‘inside’
or ‘outside’ the splat regions. The ‘inside’ texel implies that
it is coherent to at least a texel of the parent level.

Once the top-down traversal is completed, the samples
can be identified by using the HCB and the mask buffer. At
the top level, a texel whose coherence information is greater
than zero is taken as a sample. At the other levels, a texel
is taken as a sample if its coherence information is greater
than zero and it is ‘outside’ the splat regions. The samples
identified at the various levels of the HCB are copied into
a single buffer, called sample buffer, which has the same
resolution as the G-buffer.

4 Splatting indirect illumination

Indirect lighting is gathered only at the samples. Then the
results are used to determine the indirect lighting of the re-
maining G-buffer texels.
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4.1 Gathering at the samples

There exist many algorithms for gathering indirect illumi-
nation, and the samples stored in our sample buffer are in-
dependent of the algorithms. In the current implementation,
we adopted an algorithm based on the reflective shadow map
(RSM) [1]. A subset of the RSM texels defines the virtual
point lights. Then, at each sample of the sample buffer, indi-
rect lighting is gathered from the virtual point lights [1, 12].
The result of indirect lighting is stored at each sample.

4.2 Weights for indirect illumination

Consider a sample a and a point b. The coherence error be-
tween a and b is defined as follows:

εa(b,nb) = max
{
ε1
a(b), ε2

a(nb), ε
3
a(b,nb)

}
(8)

where

ε1
a(b) = ‖a − b‖

aw

ε2
a(nb) =

√
1 − na · nb√

1 − cos θmax

ε3
a(b,nb) = ρ

√

|−→ab · na|√
cosγmax

ρ =
{

1 if
−→
ab · na ≤ 0 or

−→
ba · nb ≤ 0

0 else

In (8), ε1
a(b), ε2

a(nb), and ε3
a(b,nb) measure the distance,

normal, and pose coherences, respectively, which are pre-
sented in Sect. 3.1. (Recall that aw denotes the accumulated
distance presented in Sect. 3.5.)

Point b is coherent to a if the following holds:

εa(b,nb) ≤ 1 (9)

Then, in order to determine how much the indirect lighting
computed at a contributes to lighting at b, the weight of a

toward b is defined as follows:

wa(b,nb) = (
1 − ε1

a(b)
)(

1 − ε2
a(nb)

)(
1 − ε3

a(b,nb)
)

(10)

4.3 Splatting

Each sample dispatches its lighting to the texels located
within the sphere, the radius of which has been computed
at the time of creating the HCB. For the purpose, a splatting
technique can be used [2, 6].

The splatted sphere is often approximated by a quad. The
error between a point in the quad and the sample is measured
using (8). If the coherence error is less than or equal to 1 as
shown in (9), i.e., the point is coherent to the sample, the
weight of the sample toward the point is computed using
(10).

Multiple samples can contribute lighting to a point, and
the lighting accumulated at a point is computed as follows:

Eb =
∑

i,εsi
(b,nb)≤1 wsi (b,nb)Esi

∑
i,εsi

(b,nb)≤1 wsi (b,nb)
(11)

where si and Esi denote the ith sample’s position and light-
ing, respectively. (The floating-point blending capabilities of
graphics hardware enable us to efficiently implement (11),
i.e., the numerator is accumulated in the RGB channels
whereas the denominator is simultaneously accumulated in
the alpha channel.)

Direct illumination is computed separately, and then is
combined with indirect illumination to produce the final im-
age of the scene. Figure 4 shows the result of rendering a
scene.

5 Caching indirect illumination

Computing indirect lighting at a sample is expensive. Ob-
serve that a sample identified at a frame may still be visible
in the successive frames. Then lighting computed at the sam-
ple can be cached and reused. This idea was originally pro-
posed by Gautron et al. [6], and related discussion is made
in Sect. 6.

The flow of the proposed algorithm for caching and
reusing the indirect lighting is illustrated in Fig. 5. The G-
buffer and RSM are refreshed at every frame and are inde-
pendent of the proposed algorithm. Therefore, they are not
shown in Fig. 5.

Fig. 4 Rendering result:
(a) direct lighting; (b) indirect
lighting (left half ) and samples
in white dots (right half );
(c) combination of direct and
indirect lighting (with 1024
VPLs)
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Fig. 5 Indirect illumination caching algorithm

5.1 Reusing samples

Suppose that, for the previous frame, indirect lighting has
been computed for all samples. The samples and their light-
ing stored in the sample buffer will be reused for the current
frame. Let us call the sample buffer sample cache. (A kind of
double buffering will be used to store the samples. The sam-
ple cache stores the samples of the previous frame whereas
the samples of the current frame will be recorded in the sam-
ple buffer.)

The scene may be dynamic, i.e., the objects in the scene
may move. Then a subset of the cached samples may be
found useless for the current frame and should be removed.
For this purpose, the samples are transformed into the cur-
rent view of the camera, and then the position and normal
of each cached sample are compared to those stored in the
G-buffer, which contains the geometry information of the
current frame. If the difference in distance or normal diver-
gence is greater than a pre-defined threshold, the sample is
taken as invalid and is removed. An example can be found
in Fig. 6(a) and (b).

Figure 6(b) shows that many invalid samples have been
removed, but also reveals that unnecessarily many samples
are still located at the low-frequency wall region. They are

all valid samples, but we do not need such many samples,
i.e., there exist surplus samples. When an invalid sample
is removed, the nearby samples are removed to reduce the
number of surplus samples. A predefined-size quad, cen-
tered at the invalid sample, is used to delimit the range of
the surplus samples. Figure 6(a) illustrates the quad in red,
and Fig. 6(c) shows that the number of surplus samples is
significantly reduced and the low-frequency region contains
a reasonable number of samples. In order to avoid taking a
valid sample from the cleared quad, depth testing is adopted.
A larger depth value is used for valid samples whereas a
smaller value is used for invalid samples.

In Fig. 5, the process of removing invalid and sur-
plus samples is performed by the module named “updating
cache.” The samples surviving “updating cache” are pro-
jected into the current view of the camera and stored into
the sample buffer. The sample buffer is used to produce in-
direct lighting, as presented in Sect. 4.3, and the result is
stored in the so-called indirect lighting buffer.

5.2 New sample generation

When the samples are splatted to the G-buffer, the weights
presented in Sect. 4.3 are accumulated at each texel of the
G-buffer. If the accumulated weight is less than a threshold
value, the texel is taken as incomplete. See Fig. 7(a). The
white dots are the samples in the sample buffer. The indirect
lighting is computed using the samples, and the black area
is composed of the incomplete texels.

Lighting needs to be computed for the incomplete tex-
els. For the purpose, the G-buffer data at the incomplete tex-
els’ locations are copied to another G-buffer, which we call
supplementary G-buffer. See the flowchart of Fig. 5. Then
indirect lighting is computed using it, i.e., the HCB is con-
structed for the supplementary G-buffer, a new set of sam-
ples is identified, and indirect lighting is gathered at the new
samples. Then the new samples are splatted to the original
G-buffer, not to the supplementary G-buffer, such that light-
ing using the new samples is accumulated to lighting stored
in the indirect lighting buffer. See Fig. 7(b). The green dots
in the upper image represent the new samples. The lower

Fig. 6 Sample removal: (a) the sphere is moving to the left, and the
samples cached from the previous frame are illustrated in green dots.
Note that the samples are densely located at the high-frequency re-
gion; (b) as can be clearly observed in the zoomed-in box, the invalid
samples on the sphere surface have been removed in the current frame;

(c) the surplus samples have been removed. Returning to (a), observe
the red quad centered at an invalid sample (also colored in red). Not
only the invalid sample but also the surplus samples (within the red
quad) have been removed
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Fig. 7 Handling incomplete samples. The upper row shows samples.
The cached samples are colored in white, and the new samples are in
green. The lower row shows the rendering result using the samples of
the upper row: (a) the white dots represent the cached samples sur-
viving “updating cache” and the incomplete texels compose the black

area; (b) new samples (in green dots) are generated and no incomplete
texel exits any longer; (c) the number of new samples is decreased and
the discontinuity artifact is reduced; (d) new samples can now locate
outside the area of the incomplete texels, and the discontinuity artifact
is further reduced

image is obtained by accumulating the contribution from the
new samples to the lower image of Fig. 7(a).

Note that the new samples contribute only to the incom-
plete texels. Consequently, discontinuities often occur be-
tween the areas lit by the cached samples and that by the
new samples. Such discontinuities can be found in Fig. 7(b).

In order to resolve the discontinuity artifact, first of all,
let us fill the supplementary G-buffer with all data of the
G-buffer, not with the data only at the incomplete texels’
locations. Recall that, as presented in Sect. 3.4, coherence
information of HCB texels is stored at the w-component of
their normals, denoted as nw

a s, and initialized to 1 at the base
level of the HCB. It is modified: nw

a s are assigned to 1 for
incomplete texels and −1 for others. Then Algorithm 1 is
accordingly modified such that the absolute value of nw

a is
used for computing the normal coherence but the sign of nw

a

is preserved when it is transferred to the upper level.
The procedure presented in Sect. 3.6 will identify only

the samples whose nw
a s are greater than zero, i.e., only the

samples related with the incomplete texels. See the upper
image of Fig. 7(c), and compare the number of new samples
(green dots) with that of Fig. 7(b). It is decreased because the
coherence is computed not only with the incomplete texels
but also with the complete texels. Further, see the lower im-
age of Fig. 7(c), and find that the discontinuity artifact is re-
duced because some samples contribute lighting to complete
texels nearby the incomplete texels. However, note that the
locations of new samples are restricted within incomplete
texels.

Let us move one step further. Suppose that when the
group coherence is computed in a 3 × 3 texel block at level
(k − 1) for constructing the HCB, incomplete texel is de-
tected from the block. Then the coherence information to be
stored at level k is set to positive. By doing so, the center
texel of the block can be taken as incomplete even though
it is in fact complete. Consequently, the samples can be lo-

cated outside the area of the incomplete texels, as can be
found in Fig. 7(d), and the discontinuity artifact is further
reduced.

The result of indirect lighting (stored in the indirect light-
ing buffer shown in Fig. 5) is combined with direct lighting
to produce the final image of the scene. The new samples are
added to the sample buffer such that the sample buffer can
be provided as the sample cache for the next frame.

5.3 Recomputing indirect lighting

When lighting conditions are changed, indirect lighting at
the samples should be recomputed. Fortunately, indirect
lighting changes in a low frequency and, therefore, we do
not have to recompute it every frame [5, 18]. In the cur-
rent implementation, indirect lighting is recomputed at every
four frames, and about a quarter of the samples is processed
per frame. For this purpose, the sample buffer is partitioned
into tiles, each of which is of 4×4-resolution index pattern
shown in Fig. 8(a). When a new sample is added to the sam-
ple buffer, an index is assigned using the pattern. It works as
a counter. For each frame, the counter is incremented by one
at every sample, and indirect lighting is recomputed only for
the samples whose counters reach four. Then their counters
are reset to zero.

6 Experimental results and discussions

In the algorithm proposed in this paper, the samples are
identified using only the geometry of the scene. Thus, it is
straightforward to handle multiple light sources. Figure 9
shows the result of rendering a scene lit by multiple light
sources. Compare the image with the one shown in Fig. 4
which is lit by a single light source.
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Fig. 8 Index pattern for recomputing the indirect lighting: (a) ran-
domized index pattern; (b) using the index pattern, 33924 samples in
a frame are divided into four groups of 10184, 7908, 8215 and 7617
samples. They are colored in gray scales

Figure 10 shows the final images together with the sam-
ples for two scenes. Table 1 shows the numbers and per-
centages (per level and per G-buffer) of the samples for the
scenes in Fig. 10.

Our method could be considered an extension of the
image-based lighting algorithms [1, 11–13]. However, our
approach is different from them. Most of the previous meth-
ods detect discontinuities at a block of pixels in the screen
in order to exploit coherences among the pixels. Nychols et
al. [12] used a hierarchical structure for identifying the dis-
continuities. Our method also used a hierarchical structure,
but directly checked the coherences among the pixels. De-

Fig. 9 Lighting with multiple light sources. The upper row shows the
result of direct lighting, and the lower row shows the result of adding
indirect lighting. (a) a scene with two light sources; (b) another scene
with six light sources

tecting the coherences helps reduce the number of samples
compared to discontinuity detection. Figure 11 compares the

Fig. 10 Each scene is captured
from three different viewpoints,
and the samples are illustrated
as white dots

Table 1 Statistics for the
scenes of Fig. 10 Level (resolution) Dragon scene Factory scene % of samples

left middle right left middle right (per level)

0 (1024×1024) 6,976 7,736 7,035 16,635 29,321 14,669 0.9%

1 (512×512) 7,080 6,233 6,205 10,386 9,023 9,233 1.1%

2 (256×256) 3,702 3,087 3,310 5,817 4,209 5,071 1.3%

3 (128×128) 1,467 1,184 1,368 2,632 1,841 2,460 1.3%

4 (64×64) 478 470 473 1,003 715 1,023 1.4%

5 (32×32) 1,024 1,024 1,024 1,023 620 1,020 1.4%

Total 20,727 19,734 19,415 37,496 45,729 33,476

% of samples (per G-buffer) 2.0% 1.9% 1.9% 3.6% 4.4% 3.2%
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Fig. 11 Comparison of two methods: (a) our method (11742 samples,
128 fps); (b) Nychols et al. [12] (26170 samples, 56 fps). 1024 VPLs
are used for both methods

Fig. 12 Comparison of three methods; (a) a scene with rotating
Bunny, Dragon, and Buddha; (b) the numbers of samples, where in-
direct lighting is computed, for a sequence of frames

numbers of samples between our method and Nychols et al.
[12].

Note also that, unlike Nychols et al. [12], our method uses
sample splatting which is less dependent on the current view
and therefore the samples can be cached and reused. Fig-
ure 12 compares the per-frame numbers of samples, where

indirect lighting is computed, of our methods and Nychols
et al. [12] for a scene with three rotating objects.

Our caching framework was inspired by Gautron et al.
[6], especially by the splatting technique of the cached sam-
ples. However, our work is distinct in many aspects. Gautron
et al. [6] identified a sample first by using a software raster-
izer in CPU and then used ray tracing to compute its influ-
ence region. In contrast, we used a hierarchical structure to
exploit the coherences among the screen-space pixels and
then identified the samples. (However, our method relied on
roughly approximating the influence region of a sample.)
Gautron et al. [6] transferred data between GPU and CPU,
leading to degraded performance. In contrast, our method
performs all computation within GPU.

In the previous image-based lighting algorithms [1, 11–
13], all samples are recomputed per frame, and thus the dif-
ferent sets of samples between two adjacent frames may of-
ten cause flickering artifact. Our caching method does not
suffer from this artifact.

7 Conclusions

This paper presented an image-based hierarchical coherence
structure, which enables effective sampling for indirect il-
lumination computation. Using the set of samples, two in-
direct lighting algorithms are presented: the algorithm pre-
sented in Sect. 4 is suitable for a highly dynamic scene,
and the caching algorithm presented in Sect. 5 significantly
increases the rendering performance for a relatively static
scene. Our methods also has drawbacks. It is an image-space
algorithm, and works with only the scene points visible from
the camera. We are currently investigating the possibility of
combining our method with voxelization [10, 11].
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6. Gautron, P., Křivánek, J., Bouatouch, K., Pattanaik, S.: Radiance
cache splatting: a GPU-friendly global illumination algorithm. In:
SIGGRAPH ’05 Sketches, p. 36 (2005)

7. Herzog, R., Myszkowski, K., Seidel, H.P.: Anisotropic radiance-
cache splatting for efficiently computing high-quality global illu-
mination with lightcuts. Comput. Graph. Forum 28(2), 259–268
(2009)

8. Keller, A.: Instant radiosity. In: SIGGRAPH ’97, pp. 49–56
(1997)
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