A Hardware-based Accessibility Analysis for
Real-time Robotic Manipulation

Han-Young Jang!, Sukhan Lee?, Daesik Jang?, Eunyoung Kim?, Hadi Moradi?,
and JungHyun Han'»**

! Department of Computer Science and Engineering, Korea University, Korea
2 School of Information and Communications Engineering, Sungkyunkwan
University, Korea

Abstract. This paper presents a new approach to real-time accessibil-
ity analysis for manipulative robotic tasks using graphics hardware. The
workspace is captured using a stereo camera, and heterogeneously mod-
eled with the recognized plane features, recognized objects with complete
solid models, and unrecognized 3D point clouds organized with a multi-
resolution octree. When the service robot is requested to manipulate a
recognized object, the local accessibility information for the object is re-
trieved from the object database. Then, accessibility analysis is done to
verify the local accessibility and determine the global accessibility. The
verification process utilizes the visibility query, which is accelerated by
graphics hardware. The experimental results show the feasibility of real-
time and behavior-oriented 3D modeling of workspace for robotic manip-
ulative tasks, and also the performance gain of the hardware-accelerated
accessibility analysis obtained using the commodity graphics card.

1 Introduction

Accessibility analysis refers to a spatial reasoning activity that seeks to deter-
mine the directions along which a tool can access a target object. The traditional
application fields include automatic inspection with coordinate measuring ma-
chines (CMMs) [1][2], tool path planning for assembly [3], sensor placement for
computer vision [4], numerically controlled (NC) machining [5], etc.

The majority of the work in accessibility analysis has been done in the in-
spection field. Spyridi and Requicha [6] were the first to incorporate a systematic
accessibility analysis for inspected features. They use a computationally inten-
sive method to determine if a point is accessible locally first and then globally
considering the entire workpiece.

An accessibility analysis approach, for an infinite length probe, based on a
ray tracing algorithm was proposed by Lim and Menq [7]. They determine a
discrete 3D accessibility cone which is transformed into a 2D map where only
the orientation of the probe is expressed by two angles in a spherical coordinate
system. A heuristic is used to determine the optimal probe direction for a set of
inspected points.

Limeiam and ElMaraghy [8] address accessibility analysis of any point in the
3D space using elementary solid modeling operations: intersections, translation

** Corresponding Author.

and scaling. The method relies on CPU power to determine an accessible point,
and an extended version of the method can be used for surface accessibility.

In the studies centered on inspection, it is assumed that the environment is
open for a probe’s motion and only the workpiece itself may collide with the
probe. Moreover, virtually all methods propose algorithms that run mostly off-
line to determine the accessibility. However, in real-time manipulation, a fast
accessibility analysis of the grasp points on an object is needed.

This paper proposes accessibility analysis based on wvisibility test, which has
been a fundamental problem in computer graphics since the very beginning of
the field. Among the visibility issues, the focus was dominantly on hidden surface
removal®. The problem has been mostly solved, and the z-buffer [9] technique
dominates for interactive applications. In addition to the z-buffer, current com-
modity graphics hardware supports an image-space visibility query that checks
whether a primitive is visible or not. This paper reports an accessibility anal-
ysis based on the hardware-accelerated visibility query, and its application to
manipulative robotic tasks.

2 Workspace Modeling

Environment modeling is crucial for autonomous mobile robots, especially for
intelligent service robots that perform versatile tasks in everyday human life.
However, real-time workspace modeling in a cluttered environment is a difficult
problem, and few research results have been reported.

Fig. 1. Experimental environment with an eye-on-hand configuration

The authors of this paper have tackled the problem of real-time 3D workspace
modeling for robotic manipulation using a stereo camera, and has proposed a
new approach based on recognition of global spatial features and target objects
to be manipulated. In a home service robot scenario, the robot is requested to
manipulate (for example, grasp and move) an object. A stereo camera is mounted

3 Visibility algorithms have recently regained attention because the ever increasing
size of 3D datasets makes them impossible to display in real time with classical
approaches. For a survey, readers are referred to [10].

on the end effecter of the robot arm with an eye-on-hand configuration, as shown
in Fig. 1.

: AT
3D point cloud

-(b) reference image

(a)

Fig. 2. Captured range data from a stereo camera

It is assumed that the workspace is textured enough so that the captured
range data contains a plenty of 3D points. The range data in the form of 3D point
cloud including 2D reference image is acquired from the stereo camera on the fly,
as shown in Fig. 2. (The 3D points are displayed with the combined colors of the
corresponding pixels in the reference images, just for the visualization purpose.)

The approach to workspace modeling using the 3D point cloud consists of
three stages: (1) plane extraction, (2) target object recognition, and (3) obstacle
representation. The following subsections summarize these stages.

2.1 Plane Extraction

Fig. 3. The scene with planes extracted

In a home service robot scenario, it is reasonable to assume that the requested
object lies on a planar surface such as the top plane of a table. Under the
assumption, the global planar features are first extracted. To ensure a fast and
robust processing, we resort to the combined use of the SIFT (scale-invariant
feature transform) features [11][12] with the 3D information (stereo-sis SIFT).

In the well-textured environment, a meaningful bunch of the SIFT features can
be extracted.

The 3D points comprised in the extracted planes are replaced by the planes
in the world model. Fig. 3 shows the extracted planes and the remaining points
outside the planes.

2.2 Object Recognition

(a) object model in database (b) object model in the workspace

Fig. 4. Object recognition

All objects to be manipulated (called target objects) have complete solid
model representations in the object database. In addition, the database is rich
enough to contain the SIFT features and local accessibility (which will be dis-
cussed in Section 3) information of each object. Fig. 4-(a) shows some examples
of object models used in this paper, illustrated with the SIFT features.

If the target object is recognized, its solid model is plugged into the workspace
by the quaternion-based method of Horn [13], and then the 3D point cloud
belonging to the target object is discarded, i.e. the point cloud is replaced by
the solid model. Fig. 4-(b) shows an example.

2.3 Obstacle Representation

Fig. 5. Multi-resolution octree representation of obstacles

The point clouds which are not comprised in the extracted planes and also
not recognized as target objects are taken as obstacles which should be avoided

in manipulating the target object. The obstacles are hierarchically represented in
an octree. In the proposed approach, the multi-resolution modeling is applied to
the octree construction. Coarse representations are given to the obstacles which
are relatively far away from the target object. In contrast, fine representations
are given to the closer obstacles. Such multi-resolution modeling enables efficient
collision detection and motion planning. Fig. 5 shows the multi-resolution octree
representation of the obstacles. Coarse representations lead to bigger octants
(cells of the octree) behind the cereal box, and fine representations lead to smaller
octants in front of the box.

3 Local Accessibility

Regardless of the environment in which an object is placed, the object might
be stably grasped and manipulated at certain areas of the object body. These
graspable points can be determined based on the object’s weight, dimensions
and material as well as the robot’s gripper characteristics. As discussed in the
previous section, all target objects have complete solid models in the database,
and the database contains graspability or local accessibility information of each
object. Fig. 6 shows the local accessibility representation for a cereal box. With
a robot arm of a small gripper (shown in Fig. 1), it is reasonable to define 4
access directions: +x and £y with respect to the local coordinates of the cereal
box. (In Fig. 6-(a), only +z and —y are illustrated.)

Iaocess

direction -)’
access

direction

— :

(a) access directions (b) contact point

P

Fig. 6. Local accessibility

For an access direction, there can be (infinitely) many contact points. As
illustrated in Fig. 6-(b), the contact point is defined as the intersection between
the object surface and the gripper axis when the gripper moves toward the object
along the access direction. Such infinitely many contact points can be represented
as a line with two end points. For an arbitrarily-shaped object, however, the line
should be generalized into a curve, and the curve may be 3D. Therefore, we call
the collection of the contact points a contact curve. Local accessibility is then
represented as ‘access direction plus contact curve.’

Given a contact point on the contact curve, the orientation of the gripper is
determined. As illustrated in Fig. 6-(b), the gripper should be aligned with the
normal vector of the contact curve at the contact point. The access direction
and the normal vector fix the initial orientation of the gripper. Together with
the initial position, it defines the initial pose of the gripper. Then, the gripper
simply translates towards the contact point with the fixed orientation, as will be
discussed in the next section.

In the example of Fig. 6, four instances (+z and +y) of local accessibility
are stored in the database, and priorities are given based on the intuitive hu-
man graspability preferences. It is also possible to have a set of pre-determined
priorities and change the priorities on the fly. Suppose that both +2 and —z are
given the first priority and that both +y and —y are given the second priority.
Such priorities tell the robot to try either +x or —z first, and then try either
+y or —y when the first try fails.

4 Global Accessibility

Given local accessibility, it should be verified by considering the global envi-
ronment. When verified, it is called global accessibility. Geometric reasoning is
required to convert the local accessibility into global accessibility.

Recall that local accessibility is encoded as ‘access direction plus contact
curve’ and priorities are given to the instances. The algorithm starts with the
highest accessibility direction and then tests it for global accessibility. If the test
succeeds, a contact point is returned, which is guaranteed to be optimal for the
current obstacle configuration. Then, the robot arm moves toward the contact
point and grasps the object. If the test fails, however, the next-priority (local
accessibility) instance is selected, and the same process is repeated.

The following subsections show that the global accessibility is verified through
visibility, which is classified into object visibility and gripper visibility.

(a) target object and (b) target object (c) environment (d) rendering of

its environment rendering rendering both target ob-
ject and its envi-
ronment

Fig. 7. Object visibility test along —z

4.1 Object Visibility

In order for an object to be grasped, the object should be fully visible. The
visibility test is done using hardware visibility query supported by contemporary
graphics hardware, which scan-converts the object and checks if the depth of any
pixel is changed. The visibility query returns the number of fragments (pixels)
that have passed the depth test. As it is done in hardware, the query is executed
extremely fast.

Two types of projection are supported by graphics hardware: orthographic
and perspective. We use orthographic projection, and its viewing direction is set
to the access direction. Suppose the priority of +z over +y, for the object in
Fig. 6. The surrounding environment of the cereal box is shown in Fig. 7-(a). Let
us discuss the visibility test with the access/viewing direction of —z. First, the
visibility query is issued with the target object only. Obviously, the target object
is fully visible, as shown in Fig. 7-(b)*, and the number of pixels n occupied by
the object is returned and recorded. Second, the depth-buffer is cleared, and the
environment is rendered except the target object, as shown in Fig. 7-(c). Finally,
the visibility query is issued again with the target object only, and the number
of pixels m is returned. If n > m, the target object is partially or completely
invisible. As shown in Fig. 7-(d), the cereal box is partially invisible due to some
obstacles represented in octree cells. It is found by comparing n and m. As n > m
along the access direction —z, the object is determined to be not accessible along
—z. Partially invisible objects can also be grasped and moved, but it requires
motion planning. Currently, motion planning is not addressed, and every object
is assumed to be moved along the opposite of the access direction. Of course,
our work will be integrated with motion planning in the future.

In Fig. 7, we have shown that the cereal box is not accessible along —uz.
The same geometric reasoning along the access direction z shows that the box
is not accessible either. Then, the next-priority access directions, i.e. +y, are
investigated. Due to the presence of the plane feature, the access direction y is
immediately rejected. Finally, the geometric reasoning will prove the cereal box
is accessible along —y.

It is worth mentioning that the first step of the object visibility test (rendering
of the target object) can be performed efficiently. Note that only the front faces
may contribute to the final image (and also depths) and the graphics hardware
internally performs back-face culling. In the cereal box example, only the top
face is used for the visibility query when testing the access direction —y.

4.2 Gripper Visibility

Object visibility is just the necessary condition for object manipulation. The
sufficient condition is that the gripper should be able to access the object and
grasp it. If the gripper can translate towards the target object without colliding
other primitives in the scene to obtain the configuration in Fig. 8-(a), where

4 The rendered images are provided just for easy understanding, and are not really
used for geometric reasoning. Only the hardware visibility query is issued.

I | sweeping
1 access /

viewing
direction

back face_4

(a) sweeping gripper (b) gripper back faces

Fig. 8. Gripper visibility test with back faces

the gripper contacts the target object, the object is determined to be globally
accessible.

In principle, the global accessibility test requires the swept volume of the
gripper to be tested for collision with the scene primitives. The swept volume
is generated by linearly connecting the gripper of the initial pose (discussed in
Section 3) and that of the final pose, as illustrated in Fig. 8-(a). Sweeping and
collision detection are not cheap operations. Fortunately, they can be replaced
by gripper visibility test.

Given the viewing direction (access direction of the local accessibility in-
stance) of the orthographic projection, the boundary faces of the gripper are
classified into front and back faces. We need to consider only the back faces,
shaded in Fig. 8-(b). If the back faces (at the final pose) are all visible along the
access direction, it is concluded that the sweeping gripper does not collide with
the scene primitives.

-t I 1Y

(a) target object (b) gripper ren- (c) environment (d) rendering of
and its environ- dering rendering both gripper and
ment the environment

Fig. 9. Gripper visibility test along —y

The gripper visibility test goes through the process similar to that of object
visibility test. First, the visibility query is issued only with the back faces of
the gripper at the final pose. It is fully visible as illustrated in Fig. 9-(b)®. The

5 In the current implementation, the wire part of the gripper is not considered when
its geometric model is constructed. Only the gripper body and the stereo camera

!

sampled points

<=
. @lade
colision—"""

== gripper visible
— gripper invisible

(a) mixture of visible and in- (b) point sampling
visible points

Fig. 10. Contact point determination

return value (number of visible pixels) n is recorded. Second, the depth-buffer is
cleared, and the whole environment is rendered, as shown in Fig. 9-(c). Finally,
the visibility query is issued again with the back faces of the gripper with the
same pose, and the number of pixels m is returned. Only when n = m, the gripper
is fully visible, the sweeping gripper does not collide with the scene primitives,
and the target object is determined to be globally accessible. Fig. 9-(d) shows
the final image.

Recall that there are (almost always) infinitely many contact points. Note
that the gripper visibility can be verified for some contact points while it may
not be for others. Fig. 10-(a) shows an example. We then have to be able to
decide if the gripper-visible contact points exist, and to select the best/optimal
one among them, if any. For the purpose, the contact curve is sampled, as shown
in Fig. 10-(b).

4.3 Local Visibility vs. Global Visibility

As mentioned earlier, it was assumed that the object would be accessed and
removed along an accessibility direction. However, in a real environment, an
object may need to be accessed along a direction, grasped at a contact point,
and then lifted and moved along another direction due to manipulator limits
or obstacles in the environment. This means that a local visibility does not
necessarily have to be converted into a global visibility. The proposed method
based on the graphics hardware shows one of the simplest manipulation method,
which does not actually need motion planning.

5 Conclusion

This paper presents a novel approach to accessibility analysis for manipula-
tive robotic tasks: visibility-based geometric reasoning. The accessibility anal-

are modeled. The wire part is on the opposite side of the gripper tips, and therefore
does rarely cause problems. However, for complete analysis, it will be modeled, but
the proposed algorithm will not need to be changed at all.

10

ysis process utilizes the visibility query, which is accelerated by graphics hard-
ware. The performance and robustness of the proposed approach are evaluated in
cluttered indoor environments experimentally. The experimental results demon-
strated that the proposed methods are fast and robust enough to manipulate 3D
objects for real-time robotic application. The determined accessibility direction
is used by the motion planning system to generate a collision free path to grasp
and lift the object. Moreover, the minimum clearance needed for a robot gripper
to access a grasp point should be determined. Therefore, future research plan
includes the integration with motion planners and grasp analysis.

Acknowledgements

This paper was performed for the Intelligent Robotics Development program, one
of the 21st century frontier R&D programs funded by the Ministry of Commerce,
Industry and Energy of Korea. This work is partly supported by the science and
technology program of Gyeonggi Province in Korea.

References

[1] ANSI, “Dimensioning and Tolerancing,” ANSI Y14.5M-1982, American Society of
Mechanical Engineers, February 1982.

[2] S.N. Spitz, and A. A. G. Requicha, “Accessibility Analysis using Computer Graph-
ics Hardware,” IEEFE Transactions on Visualization and Computer Graphics, Vol.
6, No. 3, pp. 208-219, July-September 2000.

[3] R. H. Wilson, “Geometric Reasoning about Assembly Tools,” Artificial Intelligence,
Vol. 98, Nos. 1-2, pp. 237-279, January 1998.

[4] E. Trucco, M. Umasuthan, A. Wallace, and V. Roberto, “Model-Based Planning of
Optimal Sensor Placements for Inspection,” IEEE Trans. Robotics and Automation,
Vol. 13, No. 2, pp. 182-193, April 1997.

[5] P. Gupta, R. Janardan, J. Majhi, and T. Woo, “Efficient Geometric Algorithms for
Workpiece Orientation in 4- and 5-Axis NC Machining,” Computer-Aided Design,
Vol. 28, No. 8, pp. 577-587, 1996.

[6] A. J. Spyridi and A. A. G. Requicha, “Accessibility Analysis for Polyhedral Ob-
jects”, in S.G. Tzafestas, ed., Engineering Systems with Intelligence: Concepts, Tools
and Applications, Dordrecht, Holland: Kluwer Academic Publishers, Inc. pp. 317-
324, 1991.

[7] C. P. Lim and C. H. Menq, “CMM Feature Accessibility and Path Generation,”
International Journal of Production Research, Vol. 32, pp. 597-618, March 1994.
[8] A.Limaiem and H. A. EIMaraghy, “A General Method for Accessibility Analysis,”
Proc. International Conference on Robotics & Automation (ICRA97), Albuquerque,

New Mexico, April 1997.

[9] E. Catmull, A Subdivision Algorithm for Computer Display of Curved Surfaces,
Ph.D. Thesis, University of Utah, December 1974.

[10] D. Cohen-Or, Y. Chrysanthou, and C. Silva, “A Survey of Visibility for Walk-
through Applications,” FUROGRAPHICS00 Course Notes, 2000.

[11] S. Se, D. Lowe and J. Little, “Vision-based Mapping with Backward Correction,”
Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002.

[12] M. A. Garcia and A. Solana, “3D Simultaneous Localization and Modeling
from Stereo Vision,” Proc. International Conference on Robotics € Automation
(ICRA04), New Orleans, LA, April 2004.

[13] P. Besl and N. McKay, “A Method for Registration of 3D Shapes,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, Vol. 14, pp. 239-256, 1992.

