
GPU-based Image-space Approach
to Collision Detection among Closed Objects

Han-Young Jang
jhymail@gmail.com

TaekSang Jeong
nanocreation@gmail.com

Game Research Center
College of Information and Communications

Korea University, Seoul, Korea

JungHyun Han
jhan@korea.ac.kr

Abstract

This paper presents an image-space algorithm for real-
time collision detection, which is run completely by GPU.
For multiple objects with no collision, the front and back
faces appear alternately along the view direction. However,
such alternation is violated when objects collide. Based on
these observations, the algorithm has been devised, and the
implementation utilizes the state-of-the-art functionalities
of GPU such as framebuffer objects and occlusion query.
The experimental results show the feasibility of GPU-based
collision detection and its performance gain in real-time ap-
plications such as 3D games.

1. Introduction

Collision detection is a fundamental problem in many
applications such as computer graphics and animation, 3D
games, virtual reality, physically-based simulation, and
robotics. It is often the major computational bottleneck
in real-time simulation of complex and dynamic systems.
A lot of algorithms for collision detection have been pro-
posed, and the algorithms based on triangulated models can
be classified into two broad categories. One is object-space
approach and the other is image-space approach.

This paper proposes a new technique for image-space ap-
proach. The proposed algorithm is quite simple, is easy to
implement using shaders, and shows superior performance.
The simplicity and efficiency of the algorithm are attractive
for real-time applications such as 3D games.

The structure of this paper is as follows. Section 2
reviews the related work, and discusses the advantages
and disadvantages of the traditional approach. Section 3
describes the features of collision among closed objects.
Based on the features, Section 4 presents the collision detec-

tion algorithm, which overcomes the disadvantages of the
traditional approach. Section 5 extends the algorithm pre-
sented in Section 4 for handling complex scenes. Section 6
discusses the strength of the proposed algorithm. Section 7
shows the test results, and Section 8 concludes the paper.

2. Related Work

In the object-space approach, most of the proposed al-
gorithms are accelerated by utilizing spatial data structures
which are often hierarchically organized and are based on
bounding volumes such as bounding spheres [11, 16], axis-
aligned bounding boxes [20, 22], oriented bounding boxes
[3], discrete orientation polytopes [12], and quantized ori-
entation slabs with primary orientations [7]. These data
structures are used to cull away portions of an object that
are not in close proximity. However, the spatial data struc-
tures do not help a lot in identifying the closest features
between pairs of objects in close proximity, especially for
dynamic environments and deformable objects, where both
of the hierarchy and bounding volumes should be updated.
Some algorithms proposed for handling deformable objects
either can handle simple objects only or have been designed
for a limited class of objects such as cloth [19, 14].

In contrast with the object-space approach, the image-
space approach typically measures the volumetric ranges of
objects along the viewing direction, and then compares the
ranges to detect collision. The trend started with the work
of Shinya and Forgue [18], where the depth layers of convex
objects are rendered into depth buffers, and then compared
for interference checking. Since then, various algorithms
for image-space approach have been proposed, and have at-
tempted to maximally utilize the graphics hardware’s func-
tionality [1, 15, 10, 21].

The most recent efforts in the image-space approach in-
clude the work by Heidelberger et al. [8, 9], which is useful

to discuss both of the advantages and disadvantages of the
image-space approach. In their work, layered depth images
(LDIs) are computed, one for each object, where an LDI
stores entry and leaving points of parallel viewing rays with
respect to an object. Then, collision is detected through
Boolean intersection on LDIs. This approach can handle
concave objects, and shows real-time performance for sim-
ple objects. However, LDI generation requires a consider-
able amount of time for objects with complex geometry.

In general, the advantages of the image-space approach
can be listed as follows. Unlike the object-space approach
which requires non-trivial pre-processing for computing
bounding volumes and their hierarchy, the image-space ap-
proach does rarely require pre-processing. Partly due to
absence of the pre-processing, the image-space approach
is easy to implement. It can also effectively handle de-
formable objects and dynamic environments. Moreover,
it usually employs graphics hardware or GPU which has
been evolving at a rate faster than Moore’s law, while the
object-space approach performs virtually all collision tests
on CPU.

The image-space approach also reveals disadvantages.
First of all, virtually all of the image-space algorithms pro-
posed so far perform collision tests using both CPU and
GPU, and suffer from the limited bandwidth between them,
i.e. the readback problem. In the LDI-based algorithm
by Heidelberger et al. [8, 9], for example, the CPU reads
the LDIs from the GPU’s back buffers, and then tests the
LDIs for Boolean intersection. Due to the limited band-
width, the sampling resolution (LDI resolution) is usually
made low, 32x32 through 128x128. Note that, however,
the accuracy of the collision detection is governed by the
LDI precision, and low resolutions do not guarantee accu-
rate detection of collision for complex objects. As an effort
to overcome the readback problem, Govindaraju et al. [5]
proposed an algorithm named CULLIDE, which computes
a potentially colliding set (PCS) through hardware visibility
query. However, it requires off-line pre-processing or setup
stage, which is quite complex. Recently, an efficient pre-
processing technique for the CULLIDE algorithm, named
chromatic decomposition [4], has been suggested, but it also
has limitations. For example, the objects to be tested for col-
lision are limited to polygonal meshes with fixed connectiv-
ity. For a deformable mesh the topology of which may vary
frame by frame, the time-consuming pre-processing has to
be executed per each frame.

Another major disadvantage of the image-based ap-
proach lies in the rendering cost because it generally ren-
ders the entire surface areas of the objects to be tested for
collision. The computational bottleneck may lie in GPU for
arbitrarily-shaped complex objects.

Finally, the input to most of the image-space algorithms
is limited to a pair of objects, not many objects in a large

scene. Knott and Pai [13] proposed an algorithm that can
handle large number of objects. However, their algorithm
is based on wireframe rendering, and therefore is inherently
fragile, i.e. may often miss obvious collision.

In order to resolve the problems of the traditional image-
space approach, this paper proposes a GPU-based algo-
rithm, where the entire collision test is run by GPU and
readback is minimized. Assuming no self-collision, the ren-
dering cost has been dramatically reduced. Further, it de-
tects collision of the entire scene, not of only a pair of ob-
jects.

3. Features of Collision among Closed Objects

Figure 1: Front-back face pairing in a closed object

(a) (b)

(c) (d)

Figure 2: Front-back face pairing in multiple objects: (a)
consistent pairs (b) inconsistent pair (c) inconsistent pairs
(d) collision area

The image-space collision detection algorithm proposed
in this paper handles only closed objects. Collision between
closed objects reveals distinct features, which have been ob-
served in many image-based algorithms. The front and back
faces of a closed mesh appear alternately along a viewing
ray, as illustrated in Fig. 1. The observation can be gener-
alized for a scene of multiple objects with no collision, as
illustrated in Fig. 2-(a). More precisely, a front face of an

object is paired with a back face of the same object. In Fig.
2-(a), we can find two such pairs, (f1,b1) of O1 and (f2,b2)
of O2. We call them consistent pairs.

Collision takes place when an object penetrates or
touches another object. In Fig. 2-(b), O1 penetrates O2,
and then consistent pairing is violated, i.e. right in front
of b1 lies f2, not f1. We call (f2,b1) an inconsistent pair.
Such observation holds for multiple object collision, as il-
lustrated in Fig. 2-(c), where we can find two inconsistent
pairs, (f2,b1) and (f3,b2). Then, collision detection resorts
to the task of finding inconsistent pairs (fi,bj), i 6=j, which
tells us that Oi collides with Oj . The shaded areas in Fig. 2-
(d) encompass all inconsistent pairs. They are used to com-
pute the collision points (the actual intersections between
objects) denoted by c1 through c4 in the figure.

4. Image-space Collision Detection and Deter-
mination

Collision handling is often divided into three parts: col-
lision detection which judges whether tow or more objects
collide, collision determination which computes the colli-
sion points, and collision response which determines the
actions to be taken in response to the collision. Many peo-
ple call the combination of the first two parts simply ‘colli-
sion detection,’ but this section distinguishes between them.
Specifically, the collision detection module computes the
inconsistent pairs, which are taken as input for the colli-
sion determination module. In the proposed system, both of
collision detection and collision determination are done by
GPU while collision response is by CPU.

Each object in the scene is associated with an axis-
aligned bounding box (AABB). The potentially colliding
set (PCS) is computed using the AABBs. The AABBs
of the PCS determine the dimension of the virtual ortho-
graphic view volume, with which the image-space collision
test is invoked. The proposed algorithm can be described as
virtual ray casting in the sense that collision is detected for
a set of parallel rays within the orthographic view volume.

4.1. Front-face Rendering through Depth
Peeling

In the proposed algorithm, a subset of the front faces
in the PCS is rendered layer by layer into textures. Such
rendering is named depth peeling, and Fig. 3 illustrates
an example with two objects (O1 and O2) and three 32-
bit floating-point textures (texture #1, texture #2,
and texture #3). At the initialization stage, all textures
are filled with the depth value of the scene background.
Then, the scene is rendered with the depth test enabled, and
its depths are recorded into texture #1. As a result,
texture #1 contains the depth values of the first-layer

(a)

(b)

(c)

(d)

Figure 3: Depth peeling iteration: (a) 1st-layer front faces
(b) 2nd-layer front faces (c) background (d) front faces in
textures

front faces, as illustrated in Fig. 3-(a). Rendering is done
by a shader, and each texel of the texture contains one more
piece of information: the object ID of the rendered pixel. As
shown in Fig. 3-(a), the object ID and the depth are stored
in color channels R and G, respectively.

A new shader is used for filling texture #2 and
texture #3. The shader renders the scene using the re-
sult of the previous stage (currently texture #1), and
discards a pixel if it is not deeper than the texel in the tex-
ture or its object ID is identical to that of the texel. Then,
only the second-layer front faces survive. Their depth val-
ues are stored into texture #2, as shown in Fig. 3-(b).

Finally, the scene is rendered again in order to update
texture #3. However, there is no more front face. Noth-
ing is rendered. As shown in Fig. 3-(c), texture #3 is
not updated at all, and all of its texels contain the back-
ground depth. Fig. 3-(d) shows the result of the depth peel-
ing process.

The depth peeling process is implemented using frame-
buffer object (FBO) [6], which has recently been specified
as a collection of local buffers such as color, depth, stencil,
and accumulation buffers. In this new specification, render-
ing destinations can be off-screen renderbuffers or textures.
They can be shared among FBOs. Therefore, the texture
rendered in a stage will be available for the next stage, at
the minimum cost of context switching.

4.2. Collision Detection: Computation of
Inconsistent Pairs

Either the front faces or the back faces of a scene can
be rendered by changing the culling mode. When the front-
face depth peeling is done and three textures (texture
#1, texture #2, and texture #3) are obtained, the
culling mode is changed to process back faces.

A back-face pixel p can be located either between
texture #1 and texture #2, as shown in Fig. 4-(a),
or between texture #2 and texture #3, as shown in
Fig. 4-(b). In both cases, the front-face texel t along p’s
viewing ray is retrieved from the texture in front of p: from
texture #1 in Fig. 4-(a), and from texture #2 in
Fig. 4-(b). Then, the IDs of t and p are compared. If they
are identical, (t,p) is a consistent pair, as shown in Fig. 4-
(a). Otherwise, it is an inconsistent pair, as shown in Fig.
4-(b), which indicates that O1 collides with O2.

Every inconsistent pair (t,p) is recorded. As the front
face information required for an inconsistent pair has al-
ready been recorded in three textures, only the back face
information (ID and depth) needs to be stored. When
p is located between texture #1 and texture #2,
texture #3 is used to store the back face information.
In contrast, texture #1 is used as output when p is lo-
cated between texture #2 and texture #3, as illus-
trated in Fig. 4-(b). Note that p’s ID and depth are stored
in color channels B and A because color channels R and G
have been filled with front face information. The shaded
area in Fig. 4-(c) represents all inconsistent pairs.

Fig. 5 illustrates the inconsistent pair computing process
for a different configuration of two objects. Note that, un-
like the case of Fig. 4, the inconsistent pairs take only a
small subset of the viewing rays. In fact, Fig. 4 shows a
special case. In general, inconsistent pairs are found in a
small area, and the collision determination algorithm dis-
cussed in Section 4.3 computes the collision points within
the area.

(a)

(b)

(c)

Figure 4: Collision detection: (a) consistent pair (b) incon-
sistent pair (c) collision area

4.3. Collision Determination

Note that texture #1, texture #2 and texture
#3 contain front and back face information required for all
the inconsistent pairs. More precisely, color channels R and
G of the three textures store the front face information while
color channels B and A of texture #1 and texture
#3 store the back face information. Using the textures, the
collision determination stage computes the collision points.

For computing the collision points, the culling mode is
disabled and all faces in the scene are rendered. For each
pixel p, first of all, the front-face information stored in the
textures is retrieved. Suppose a texel t is selected from a
front face. The pixel shader performs three tests with p and
t: (1) if p and t have different IDs, (2) if t is not deeper
than p, and (3) the distance between p and t is less than a
given threshold. Fig. 6-(a) shows examples: (t1,p1) does
not pass the first test; (t2,p2) passes the first test, but fails
the second test; (t3,p3) passes both of the first and second
tests, but fails the third test; (t4,p4) passes all the tests, and
a collision point c=(t4,p4) is obtained.

(a)

(b)

(c)

Figure 5: Collision detection: (a) depth peeling result (b)
inconsistent pair (c) collision area

In Fig. 6-(a), p4 is a back-face pixel, and t4 is a front-
face pixel. Therefore, c is a point of collision ‘between back
and front faces.’ However, p is not necessarily a back-face
pixel. In Fig. 6-(b), p is a front-face pixel, and the three
tests lead to a point of collision ‘between front faces.’

In the collision determination stage, each pixel p has to
be tested not only with the front faces but also with the back
faces. The tests are quite similar. For a texel t from a back
face, p is tested (1) if its ID is different from t’s, (2) if it is
not deeper than t, and (3) the distance from t is less than a
given threshold. Fig. 6-(c) shows a collision point c=(t,p)
which passes the three tests. It is found that, for the object
configuration of Fig. 6-(a) and -(c), the collision determina-
tion algorithm computes two collision points.

Finally, the collision determination algorithm can com-

(a)

(b)

(c)

(d)

Figure 6: Collision determination: (a) back-front collision
(b) front-front collision (c) front-back collision (d) back-
back collision

pute a point of collision ‘between back faces,’ as shown in
Fig. 6-(d). Two collision points are computed for the con-
figuration of Fig. 6-(b) and -(d).

Figure 7: Collision point representation

A collision point c represents a pair of points from two
colliding objects Oi and Oj , and therefore is recorded as
two points in texture #4, as shown in Fig. 7. The set of
collision points is readback to CPU for collision response.
(In the collision point representation, each ID includes a flag
indicating whether the point belongs to a front face or a back
face. The flag is useful for the collision response stage.)

5. Iteration for a Complex PCS

Contemporary graphics hardware supports up to four
render targets, and the proposed algorithm utilizes all of
them: texture #1, texture #2 and texture #3
to store the front and back face information for the inconsis-
tent pairs, and texture #4 to store the collision points.
For a simple PCS, four textures would be enough. For a
complex PCS such as the one in Fig. 8, however, more tex-
tures will be needed. The problem is resolved by iterating
the collision detection and determination algorithms.

Fig. 8-(a) shows the result of depth peeling with three
textures. The collision determination algorithm consid-
ers only the pixels located between texture #1 and
texture #3, and will return two collision points, c1 and
c2, as shown in Fig. 8-(b). The collision points are readback
to CPU. Then, the second iteration of depth peeling starts
by taking texture #3 of the first iteration as texture
#1. Fig. 8-(c) shows the result of depth peeling. Finally,
the collision determination algorithm computes four colli-
sion points, c3 through c6, as shown in Fig. 8-(d).

To decide if a new iteration is needed, the system checks
the result of the occlusion query [17], which has been is-
sued for the front faces in the previous iteration. The oc-
clusion query returns the number of pixels that have passed
the depth test. If the return value is 0, no more iteration is
needed.

A more complex PCS is shown in Fig. 9. The first it-
eration computes the collision points, c1, c2 and c3 in Fig.
9-(a), and the second iteration computes the collision point

(a)

(b)

(c)

(d)

Figure 8: Iterated collision test: (a) 1st iteration: depth peel-
ing (b) 1st iteration: collision points (c) 2nd iteration: depth
peeling (d) 2nd iteration: collision points

c4 in Fig. 9-(b). All the required collision points are ex-
tracted.

(a)

(b)

Figure 9: Iterated collision test: (a) 1st iteration (b) 2nd
iteration

6. Discussions

As discussed in Section 2, the traditional image space ap-
proach suffers from three major drawbacks. The algorithm
proposed in this paper resolves them successfully. First of
all, in the current implementation, CPU computes only the
potentially colliding set (PCS), and the entire collision test
is run by GPU. The authors believe that such an approach
is the first of its kind in collision test research field. As
discussed in Section 5, CPU reads the collision points only
once for an iteration. The algorithm does not suffer from
the readback problem.

The second drawback of the traditional approach has also
been resolved: the proposed image-space algorithm does
not necessarily render the entire surface of an object. For an
arbitrarily-shaped complex object, it significantly increases
efficiency. Fig. 10 and Fig. 11 illustrate the collision test
with two objects in different configurations. In both cases,
two iterations are enough, and just three layers of the front
faces are rendered in total. In contrast, for example, the LDI
approach computes nine pairs of entry and leaving points
(volumetric ranges) by rendering the entire surface, for the
cases of Fig. 10 and Fig. 11.

Third, the proposed algorithm can detect collision of the
entire scene, not of only a pair of objects. The performance
gain obtained by processing the entire scene at a time is es-
pecially useful for real-time applications such as 3D games.

(a)

(b)

(c)

Figure 10: Collision example: (a) objects (b) depth peeling
results (c) inconsistent pair

A noteworthy fact is that the texture resolution govern-
ing the accuracy of collision detection can be adaptively set
depending on the PCS size in the screen. Then, the preci-
sion of the collision test becomes compatible with the user’s
visual perception. This makes the proposed algorithm dis-
tinguished from other real-time image-space collision de-
tection algorithms.

For collision response, the impulse-based simulation
method proposed by Guendelman et al. [2] is used. One of
the factors determining the impulse is the surface normal at
the collision point. CPU computes the surface normal using
the collision points provided by the collision determination
module.

Collision between two objects is classified into a pene-
tration case and a contact case. For the penetration case,
multiple collision points are extracted. In contrast, a single
collision point can be extracted for the contact case where
an object simply touches the other. Our collision response
module considers only the penetration case, and computes
the surface normal using three neighboring non-linear col-
lision points of the same object ID. The contact case is nat-
urally handled because the simulator of [2] anticipates the
object configuration of the next frame, computes the im-

(a)

(b)

(c)

Figure 11: Non-collision example: (a) objects (b) depth
peeling results (c) consistent pair

pulse based on the collision points, and then updates the
current frame.

7. Implementation

The proposed algorithm has been implemented in C++,
OpenGL and Cg on a PC with 3.2 GHz Intel Pentium4 CPU,
2GB memory, and NVIDIA GeForce 7800GTX 256MB
GPU. Various functionalities of the graphics hardware are
exploited, e.g. the GL NV occlusion query for depth
peeling, GL ARB vertex buffer object for vertex buffer,
EXT framebuffer object for off-screen rendering, etc. 32-
bit floating-point textures are used as render targets. FACE
semantic of OpenGL NV fragment program 2.0 profile is
used for checking whether a pixel is on a front face or a
back face.

The proposed algorithm has been tested with various ob-
jects, and shown in Fig. 12 are complex models among
them. Fig. 13 lists the measured execution time for
both collision detection and collision determination be-
tween pairs of the complex models. In each sub-figure,
the right one shows heavy intersection while the left one
shows light intersection. When heavily intersected, more

(a) Dragon (902K triangles) (b) Goldman (512K triangles)

(c) Buddha (106K triangles) (d) Dinosaur (108K triangles)

Figure 12: Test objects

time is need for collision detection. Fig. 13-(a) through -(d)
are listed in the deceasing order of mesh complexity, e.g.
1423K triangles in Fig. 13-(a) and 214K triangles in Fig.
13-(d).

In Fig. 14, the upper-right vertex of each curve cor-
responds to Fig. 13-(a) while the lower-left vertex corre-
sponds to Fig. 13-(d), i.e. execution time is proportional
to the mesh complexity. Collision detection and determina-
tion performances are also evaluated by changing the tex-
ture resolution. Three curves in Fig. 14 show that the tex-
ture resolution does not have a great impact on the perfor-
mance. Recall that the accuracy of the collision detection
is governed by the texture/image precision. Therefore, in
the proposed approach, highly accurate collision test can be
achieved in real-time even with 1024×1024 texture.

Table 1: Performance evaluation for collision among multi-
ple objects

collision test collision response fps
objects time per frame time per frame

100 20ms 2ms 40
50 9ms 1ms 84

(a) Dragon and Goldman

(b) Dragon and Buddha

(c) Dinosaur and Goldman

(d) Dinosaur and Buddha

Figure 13: Performance evaluation for collision test be-
tween two objects

Fig. 15 shows a cube in which multiple objects are mov-
ing and colliding with each other. Each model consists of
thousands of triangles, and an object has 3K polygons on
average. Table 1 shows the performance evaluation mea-
sured by varying the number of objects. Collision test and

Figure 14: Performance evaluation with different texture
resolutions

Figure 15: Multiple objects in a cube

response show satisfactory performances despite the high
complexity of the scene in Fig. 15. Finally, the proposed al-
gorithms are tested with ragdoll simulation and its collision
with rigid body objects, as shown in Fig. 16. The collision
test also shows quite satisfactory performance.

8. Conclusion

This paper presented an efficient image-space algorithm
to real-time collision detection. In the current implemen-
tation, CPU computes only the potentially colliding set
(PCS), and the entire collision test is run by GPU. The al-
gorithm does rarely suffer from the readback problem. Fur-
ther, the proposed algorithm does not necessarily render the
entire surface of an object, and therefore the rendering cost
has been reduced. The algorithm’s efficiency is achieved by
detecting collision of the entire scene, not of only a pair of
objects. The algorithm maximally utilizes the state-of-the-
art functionalities of GPU such as framebuffer objects and
occlusion query. The experimental results show the feasi-

Figure 16: Ragdoll simulation

bility of GPU-based collision detection and its performance
gain in real-time applications such as 3D games.

9. Acknowledgement

This research was supported by the Ministry of Infor-
mation and Communication, Korea under the Information
Technology Research Center support program supervised
by the Institute of Information Technology Assessment,
IITA-2005(C1090-0501-0019).

References

[1] G. Baciu, S. K. Wong, and H. Sun. RECODE: An image-
based collision detection algorithm. Journal of Visualization
and Computer Animation, 10(4):181–192, 1999.

[2] R. F. E. Guendelman, R. Bridson. Nonconvex rigid bodies
with stacking. In Proceedings of ACM SIGGRAPH, pages
871–878, 2003.

[3] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A hi-
erarchical structure for rapid interference detection. In Proc.
of ACM SIGGRAPH, pages 171–180, 1996.

[4] N. K. Govindaraju, D. Knott, N. Jain, I. Kabul, R. Tamstorf,
R. Gayle, M. C. Lin, and D. Manocha. Interactive colli-
sion detection between deformablemodels using chromatic
decomposition. In Proc. of ACM SIGGRAPH 2005, pages
991–999, 2005.

[5] N. K. Govindaraju, S. Redon, M. Lin, and D. Manocha.
CULLIDE: Interactive collision detection between com-
plex models in large environments using graphics hardware.

In Proc. of ACM SIGGRAPH/Eurographics Workshop on
Graphics Hardware, pages 25–32, 2003.

[6] S. Green. The opengl framebuffer object extension. Game
Developers Conference 2005, 2005.

[7] T. He. Fast collision detection using QuOSPO trees. In
Symposium on Interactive 3D Graphics, pages 55–62, 1999.

[8] B. Heidelberger, M. Teschner, and M. Gross. Realtime volu-
metric intersections of deforming objects. In Proc. of Vision,
Modeling and Visualization, pages 461–468, 2003.

[9] B. Heidelberger, M. Teschner, and M. Gross. Detection of
collisions and self-collisions using image-space techniques.
In Proc. Computer Graphics, Visualization and Computer
Vision WSCG’04, pages 145–152, 2004.

[10] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha. Fast 3D
geometric proximity queries between rigid and deformable
models using graphics hardware acceleration. Technical re-
port, Department of Computer Science, University of North
Carolina, 2002.

[11] P. M. Hubbard. Interactive collision detection. In Proc. of
IEEE Symposium on Research Frontiers in Virtual Reality,
pages 24–32, 1993.

[12] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral,
and K. Zikan. Efficient collision detection using bounding
volume hierarchies of k-DOPs. IEEE Transactions on Visu-
alization and Computer Graphics, 4(1):21–36, 1998.

[13] D. Knott and D. Pai. CinDeR: Collision and interference
detection in real–time using graphics hardware. In Proc. of
Graphics Interface ’03, pages 73–80, 2003.

[14] J. Mezger, S. Kimmerle, and O. Etzmuss. Hierachical tech-
niques in collision detection for cloth animation. Journal of
WSCG, 11(2):322–329, 2003.

[15] K. Myszkowski, O. Okunev, and T. Kunii. Fast collision de-
tection between computer solids using rasterizing graphics
hardware. Visual Computer, 11:497–511, 1995.

[16] I. Palmer and R. Grimsdale. Collision detection for an-
imation using sphere-trees. Computer Graphics Forum,
14(2):105–116, 1995.

[17] A. Rege. Occlusion - hp and nv extensions. Game Develop-
ers Conference 2002, 2002.

[18] M. Shinya and M. Forgue. Interference detection through
rasterization. Journal of Visualization and Computer Ani-
mation, 2(4):131–134, 1991.

[19] M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets,
and M. Gross. Optimized spatial hashing for collision de-
tection of deformable objects. In Proc. of Vision, Modeling,
Visualization, pages 47–54, 2003.

[20] G. van den Bergen. Efficient collision detection of complex
deformable models using AABB trees. Journal of Graphics
Tools, 2(4):1–14, 1997.

[21] T. Vassilev, B. Spanlang, and Y. Chrysanthou. Fast cloth
animation on walking avatars. Computer Graphics Forum
(Proc. of Eurographics01), 20(3):260–267, 2001.

[22] G. Zachmann and W. Felger. The boxtree: enabling real-
time and exact collision detection of arbitrary polyhedra. In
Proc. of Workshop on Simulation and Interaction in Virtual
Environments, SIVE 95, pages 104–113, 1995.

