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Abstract. This paper presents a new image-space algorithm for real-time
collision detection, where the GPU computes the potentially colliding sets,
and the CPU performs the standard triangle/triangle intersection test.
The major strengths of the proposed algorithm can be listed as follows:
it can handle dynamic models including deforming and fracturing objects,
it can take both closed and open objects, it does not require any prepro-
cessing but is quite efficient, and its accuracy is proportional to the visual
sensitivity or can be controlled on demand. The proposed algorithm would
fit well to real-time applications such as 3D games.

1 Introduction

Collision detection is a fundamental problem in many applications such as 3D
games, virtual reality, medical simulation, physically-based simulation, and
robotics. A lot of algorithms for collision detection have been proposed. The
algorithms based on triangulated models can be classified into two broad cate-
gories. One is object-space approach and the other is image-space approach.

In the object-space approach, most of the proposed algorithms are acceler-
ated by utilizing spatial data structures which are often hierarchically organized
and are based on bounding volumes [1,2]. A state-of-the-art algorithm in the
object-space approach is found in the work of Zhang and Kim [3]. The algo-
rithm performs AABB overlap test which is accelerated by GPU. The algorithm
runs quite fast enough to handle deformable objects with high accuracy. How-
ever, it is not suitable for fracturing objects. When the triangles in an AABB
fall apart due to fracture, the AABB stream often has to be restructured. Such
restructuring hampers real-time performance.

The image-space approach typically measures the volumetric ranges of ob-
jects along the viewing direction, and then compares the ranges to detect col-
lision. Since the seminal work of Shinya and Forgue [4], various algorithms for
image-space approach have been proposed, attempting to maximally utilize the
powerful rasterization capability of the GPUs. Recent efforts in the image-space
approach include the work of Heidelberger et al. [5] and Govindaraju et al. [6].
The approach of Heidelberger et al. can handle concave objects, but requires
a considerable amount of time for collision detection of objects with complex
geometry, due to the rendering and readback overhead. As an effort to alleviate

G. Bebis et al. (Eds.): ISVC 2007, Part I, LNCS 4841, pp. 66–75, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Image-Space Collision Detection Through Alternate Surface Peeling 67

the readback problem, Govindaraju et al. proposes CULLIDE algorithm, which
can reduce the readback overhead using occlusion query. However CULLIDE
algorithm requires an off-line setup stage, which defines the sub-objects used
for each occlusion query. In case of a fracturing model, the topology may vary
frame by frame. The time-consuming pre-processing has to be executed per each
frame.

This paper proposes a new algorithm for the image-space approach. Its key
components are implemented in shader programs. Like many of the image-space
collision detection algorithms, the proposed algorithm can handle deformable
models. The unique strength of the proposed algorithm is its versatility: it can
handle both closed and open objects, and more importantly it can take as input
various dynamic models including fracturing meshes. Moreover, our algorithm
overcomes not only the readback and rendering overhead but also the accuracy
problem of the ordinary image-space approach. The proposed algorithm does
not require any pre-processing, is simple to implement, and shows superior per-
formance. Such an algorithm is attractive for real-time applications such as 3D
games.

2 Overview of the Approach

This paper proposes to compute potentially colliding sets(PCSs) using GPU and
leave the primitive-level intersection test to CPU. This framework is similar to
the state-of-the-art work in the image-space approach, CULLIDE [6], and that
in the object-space approach, the work of Zhang and Kim [3]. Unlike CULLIDE,
however, the proposed algorithm computes the PCSs always at the primitive
level, and further it resolves the major drawbacks of CULLIDE discussed in
the previous section. Unlike the work of Zhang and Kim [3], the proposed algo-
rithm maintains the trade-off between accuracy and efficiency, and can handle
fracturing objects.

Fig. 1 shows the flow chart of the proposed image-space collision detection
algorithm. Each object in the scene is associated with an axis-aligned bounding
box (AABB). If the AABBs of two objects O1 and O2 intersect, the intersection
is passed to GPU as a region of interest (ROI ). Fig. 2 illustrates three examples,
each with a pair of objects, their AABBs, and the ROI. No ROI is found in Fig.
2-(a) whereas ROIs are found and passed to GPU in Fig. 2-(b) and -(c). Given
an ROI, GPU computes PCSs. A PCS consists of two triangle sets, one from O1
and the other from O2. No PCS is computed in Fig. 2-(b) whereas two PCSs
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Fig. 1. System architecture
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Fig. 2. Object AABBs and ROIs. (a) no ROI, (b) ROI with no collision, (c) ROI with
collision.

are computed in Fig. 2-(c). Given the PCSs in Fig. 2-(c), CPU performs the
traditional triangle intersection test to obtain the intersection points c1 and c2.

3 Surface Peeling and PCS Computation

Given an ROI passed by CPU, GPU computes PCSs by rendering the ROI
surfaces into textures. Rendering is done in a layer-by-layer fashion, and we call
it surface peeling. (The idea of surface peeling is not new, and its root comes
from the area of transparent surface rendering [7]. It has been named depth
peeling. There have been lots of applications of depth peeling, and in fact the
work of Heidelberger et al. [5] described in Section 1 adopted the depth peeling
algorithm. In this paper, we use the terminology ‘surface peeling’ instead of
‘depth peeling’ for stressing the differences between the two approaches, which
will be discussed later.)

As in many image-space collision detection algorithms, orthographic projec-
tion along a viewing direction is used for rendering. It can be described as casting
of parallel rays. Fig. 3 illustrates the surface peeling process with the example
of Fig. 2-(c). Between the two objects, the one farther from the viewpoint is
first rendered. It is O2 in the example. The rendering result is stored in a 32-bit
floating-point texture, texture #1, as illustrated in Fig. 3-(a). In the texture,
the R channel stores the depth value of the rendered pixel, and the G channel
stores the triangle ID of the pixel, which is the ID of O2’s triangle hit by the
ray. (Triangle identification will be discussed in Section 5).

In the next phase, a new shader program renders O1 through the depth test
with the output of the previous stage (currently, stored in texture #1). The
shader program discards a pixel of O1 if it is not deeper than the corresponding
texel in texture #1. The result is stored in texture #2, as shown in Fig. 3-(b),
where the depth values and triangle IDs are stored into color channels R and G.

(a)

ROI texture #1
R G B A

(b)

ROI texture #2
R G B Aviewing

direction

orthographic
projection

Fig. 3. Surface peeling. (a) phase 1, (b) phase 2.
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Fig. 4. PCS computation

In order to compute PCSs, a simple test is invoked for the space between
texture #1 and texture #2 in Fig. 3. If the distance d between texel t1 from
texture #1 and texel t2 from texture #2 is less than the threshold ε, as shown
in Fig. 4, the triangle IDs are retrieved from t1 and t2, and then passed to CPU
as PCSs. Finally, given the PCSs, CPU computes the intersection points, c1 and
c2 in Fig. 4.

4 Alternate Surface Peeling

The ROI is composed of a pair of two objects, and in general PCS computation
requires the two objects to be alternately rendered. Let us discuss the alternate
rendering using the example in Fig. 5. O2 is deeper than O1, and therefore
O2 is rendered first to create texture #1, as shown in Fig. 5-(a). O1 is then
rendered to create texture #2, as shown in Fig. 5-(b). Surface peeling does not
stop here. The shader program again renders O2 through the depth test with
texture #2, i.e. the shader program discards a pixel of O2 if it is not deeper
than the corresponding texel of texture #2. The result is stored in texture
#3, shown in Fig 5-(c).

Fig. 5. Alternate surface peeling with three textures. (a) phase 1, (b) phase 2, (c) phase
3, (d) phase 4.
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Suppose that the current implementation uses a graphics chip with four render
target textures. (The state-of-the-art graphics hardware such as GeForce 8800
series supports eight render targets.) Among the four textures, three are used
for surface peeling, and the remaining one is for recording PCSs. For efficient
recording and readback of the PCSs, a hierarchical technique proposed by [8] is
employed.

Note that only color channels R and G have been used so far to store the
depth values and triangle IDs. Color channels B and A are empty. It is time
to render O1 through the depth test with texture #3. The rendering result is
recorded at color channels B and A of texture #1, as shown in Fig. 5-(d). No
more surface remains in the ROI, and the alternate rendering stops. (Occlusion
query is used to decide when to stop rendering.) If we had more surfaces to
render, B and A channels of texture #2 and then texture #3 would be used.

For a complex configuration of objects, however, more than six times of surface
peeling may be needed. Then, the texture storing the PCSs is read back to CPU,
and the second stage of the surface peeling is started, where the 6th surface
peeled in the first stage is used for depth test.

Note that, as shown in Fig. 5-(d), not all surfaces in the ROI are rendered. In
contrast, the Heidelberger′s algorithm based on depth peeling [5] renders all sur-
faces in the ROI, and all of the rendered surfaces are read back to CPU, which
causes a serious overhead. Recall that our algorithm computes PCSs from the ren-
dered surfaces, and passes the PCSs to CPU, not the rendered surfaces themselves.
Given objects with complex geometry, the alternate surface peeling algorithm pro-
posed in this paper is superior in performance to the Heidelberger′s algorithm.

PCSs are created between two adjacent textures. For example, in Fig. 5-(b),
two PCSs are obtained between texture #1 and texture #2, and eventually
lead to the intersection points c1 and c2. Similarly, intersection point c3 in Fig.
5-(c) is computed by CPU from the PCS obtained between texture #2 and
texture #3. Finally, c4 in Fig. 5-(d) is computed from the PCS between texture
#3 and texture #1.

5 Triangle Identification for PCS Computation

A well-known problem of image-space collision detection is that its effectiveness
is limited by the image-space resolution and the image-space approach often
misses overlapping primitives. See Fig. 6 where two objects, O1 and O2, collide.
O1 includes the triangles (polygons) p1, p2 and p3, and O2 includes p4 and p5.
Along the upper ray, t1 is first recorded into the texture, but no pairing is possible
because the intersection between the ray and p1 lies in front of t1. Therefore,
no PCS is obtained. In contrast, the mid ray detects <t2,t4> and identifies the
PCS, {(p2),(p5)}. In actuality, p2 and p5 do not intersect, and CPU computes
no intersection point. The lower ray detects <t3,t5> and identifies the PCS,
{(p3),(p5)}. Then, the CPU will compute the intersection point c2. Note that the
other intersection point c1 is not found. Unless the image-space resolution reaches
the infinity, overlapping primitives can be missed in the proposed algorithm.



Image-Space Collision Detection Through Alternate Surface Peeling 71

Fig. 6. Sampling error alleviation
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Fig. 7. Triangle ID: The center vertex v is assigned a gray color. In each triangle,
vertex ordering is denoted by numbers. All of the three gray-colored triangles have v
as the last vertex.

In order to alleviate (not solve) the inaccuracy problem, the proposed algo-
rithm adopts a trick based on flat shading, where a triangle’s color is set to the
color of its last vertex. (It is OpenGL convention. In DirectX, the color of the
first vertex determines the triangle color.) In the proposed scheme, a distinct
color c is associated with each vertex v. Therefore, every flat-shaded triangle
whose last vertex is v is colored in c, as illustrated in Fig. 7. For each pixel
stored in the texture during the surface peeling process, its color is taken as the
triangle ID. Note that the triangle ID is not unique, i.e. multiple triangles may
have an ID. For example, the three gray-colored triangles in Fig. 7 will be given
an identical ID.

Such non-unique IDs alleviate the problem caused by an insufficient image-
space resolution. Let us revisit the mid ray in Fig. 6, and suppose p4 and p5 of O2
have an identical ID. Then, the PCS will be {(p2),(p4,p5)}, not just {(p2),(p5)},
and the intersection point c1 can be obtained.

Fig. 8 illustrates the ratio, which is named miss ratio, of the missing to all
intersection points. The miss ratios depend on viewing directions. In Fig. 8, a
pair of θ (longitude) and φ (latitude) defined in a spherical coordinate system
represents a viewing direction, where θ is sampled at intervals of 30o and φ is
at 10o. Given the configuration of bunny and dragon in Fig. 8-(a), Fig. 8-(b)
shows the miss ratios when the ROI is assigned a 256×256-sized texture. The
algorithm adopts the non-unique ID scheme. The average miss ratio is 5.02%
while the largest miss ratio is 12.7% and the smallest is 0.65%.

Fig. 8-(c) shows the miss ratios when the algorithm adopts the unique ID
scheme, i.e. a triangle is given a unique ID. The miss ratios become high. The
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Fig. 8. Miss ratios: dragon (2.9K triangles) and bunny (2.7K triangles)

average miss ratio is 22.61% while the largest miss ratio is 29.31% and the
smallest is 14.98%.

Fig. 8-(d) shows the result of using a 128×128-sized texture, where non-unique
ID scheme is used. The average miss ratio is 12.32% while the largest miss ratio
is 20.52% and the smallest is 5.86%. Compare the miss ratios of Fig. 8-(b) and
Fig. 8-(d): 5.02% and 12.32%. Obviously, the miss ratio increases when a smaller
texture is assigned to an ROI.

Recall that a smaller texture is assigned to an ROI when there are many ROIs
in the scene. In such a scene of crowded colliding objects, each ROI generally
takes just a small fraction in the screen. Therefore, inaccuracy in collision detec-
tion and consequent collision response would not be easily perceived. In contrast,
suppose that the scene consists of the two objects in Fig. 8-(a). Then, the en-
tire 512×512-sized texture is assigned to the ROI, and the miss ratio drops
significantly, leading to realistic collision response. In summary, the precision
of the collision detection is roughly proportional to the user’s visual sensitivity.
This feature makes the proposed algorithm distinguished from other image-space
algorithms.

6 Implementation and Test

The proposed algorithm has been implemented in C++, OpenGL and Cg on a
PC with 2.4 GHz Intel Core2 Duo CPU, 2GB memory, and NVIDIA GeForce
7900GTX GPU with 512 video memory and PCI-Express interface. Various func-
tionalities of the graphics hardware are exploited, e.g. the GL NV occlusion query
for surface peeling, EXT framebuffer object for off-screen rendering, etc.

As discussed earlier, the proposed algorithm can handle a variety of dynamic
objects. Fig. 9 shows a scene where a deforming object, lizard, walks through the
balls on the billiard table. (See the attached video.) Table 1 shows the perfor-
mance statistics for 4 configurations in Fig. 9. Each configuration has a distinct
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(a) (b) (c) (d)

Fig. 9. Test #1: deforming lizard (2.1K triangles) and 40 billiard balls (each of 4.5K
triangles)

Table 1. Performance evaluation for lizard and billiard table simulation (times in ms)

nCTP AABB GPU readback CPU total
(a) 15 0.07 3.11 0.11 0.07 3.36
(b) 33 0.07 3.08 0.13 0.14 3.42
(c) 96 0.07 3.28 0.15 0.44 3.94
(d) 173 0.07 3.02 0.36 0.68 4.13

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10. Test #2: Fracturing cloth (1.6K triangles) and 40 falling objects (each of 2.1K
triangles)

number of colliding triangle pairs (nCTP). AABB construction requires negligi-
ble amount of time. GPU time is spent for surface peeling and PCS computation.
Note that the GPU times remain almost constant for varying nCTPs. In con-
trast, the readback time is proportional to the PCS size. So is the CPU time
spent for triangle/triangle intersection test.

Fig. 10 shows simulation of a deforming and fracturing object, cloth, which
is being torn by the falling sharp rigid objects. (See the attached video.) When
the cloth is torn, its mesh connectivity changes. Furthermore, new triangles are
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Table 2. Performance evaluation for cloth simulation (time in ms)

nCTP AABB GPU readback CPU total
(a) 16 0.03 2.66 0.12 0.10 2.91
(b) 115 0.03 3.05 0.68 0.66 4.42
(c) 96 0.03 4.26 0.39 0.48 5.16
(d) 39 0.03 2.39 0.14 0.36 2.93
(e) 125 0.03 3.22 0.73 0.67 4.65
(f) 222 0.03 2.38 0.84 0.95 4.20
(g) 339 0.03 3.15 0.92 1.66 5.75
(h) 262 0.03 2.90 0.71 1.17 4.81

dynamically added in the areas being split, to achieve more natural simulation.
The collision detection algorithm proposed in this paper does not require any
extra time for handling such a dynamic and fracturing object. In contrast, han-
dling this kind of simulation would be difficult in the state-of-the-art collision
detection algorithms such as those of Govindaraju et al. [6] (CULLIDE) and
Zhang and Kim [3]: CULLIDE requires each sub-object to be a single triangle,
which would lead to a huge number of occlusion queries, and the algorithm by
Zhang and Kim requires an AABB to contain a single triangle, which would lead
to a serious readback overhead.

Table 2 shows the performance statistics for 8 configurations in Fig. 10. Cloth
simulation itself takes about 2 ms for all configurations. Collision detection
among the falling rigid objects is done using RAPID 2.0 [9] which is better
for rigid body collision detection.

7 Conclusion

This paper presented an efficient image-space algorithm for real-time collision
detection. In the current implementation, shader programs compute the PCSs,
and CPU performs the primitive-level intersection test. The algorithm can han-
dle a variety of dynamic objects including fracturing meshes, and does rarely
suffer from the readback problem. The experimental results show the feasibil-
ity of the shader-based collision detection and its performance gain in real-time
applications such as 3D games.

The proposed algorithm also has disadvantages. It works in a synchronous
mode between CPU and GPU, i.e. CPU waits until GPU computes the PCSs.
The proposed algorithm cannot handle self-collision. The proposed algorithms
are being extended for overcoming these disadvantages.
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