

Porous Deformable Shell Simulation with Surface Water Flow and Saturation

Kiwon Um¹, Tae-Yong Kim², Youngdon Kwon³, and JungHyun Han¹

¹ Korea University ² NVIDIA ³ Sungkyunkwan University

Table of Contents

- Motivation
- Related Work
- Method
 - Two-Layer Model
 - Surface Flow
 - Capillary Flow
 - Changes in Material Properties
- Conclusion and Future Work

Motivation

- Fluids
 - Small scale
 - Large scale
- Objects
 - Rigid
 - Deformable
- Interaction – Waterproof?

Related Work

- Lenaerts *et al*.
 - 2008, SIGGRAPH, Porous flow in particle-based fluid simulations
- Huber *et al.*2011, CGI, Wet cloth simulation
- Patkar and Chaudhuri
 2013, TVCG, Wetting of porous solids

Two-Layer Model

- Surface layer
- Interior layer

Surface Flow

- Fluid simulation in 2D (texture space) with the variational approach [Mullen *et al.*]
- External forces
 - Projected onto the 2D domain

Capillary Flow

• Absorption: surface \rightarrow interior

$$\Delta m_{(i,j)} = \rho_w H_{(i,j)} \epsilon \left(\frac{\sigma \psi \cos \Phi}{\eta d_c}\right)^{\frac{1}{2}} A \Delta t^{\frac{3}{2}}$$
$$H_{(i,j)} = \begin{cases} 1 \quad \rho_{(i,j)} \cdot (1 - S_{(i,j)}) > 0\\ 0 \qquad otherwise \end{cases}$$

$ ho_w$:	constant water density
ϵ :	porosity
σ :	surface tension
ψ :	permeability
Φ:	contact angle
η :	dynamic viscosity
d_c :	effective pore radius
<i>A</i> :	contact area
$\rho_{(i,j)}$:	mass density computed
	through surface flow simulation
$S_{(i,j)}$:	saturation degree

- In a cell (i, j)
 - Volume of cell
 - V
 - Mass contained at cell (i, j) of the surface layer
 - $m_{(i,j)}^s = \rho_w \rho_{(i,j)} V$
 - Capacity of mass at cell (i, j) of the interior layer

•
$$m_{(i,j)}^i = \epsilon \rho_w (1 - S_{(i,j)}) V$$

$$\Delta m'_{(i,j)} = \min(m^s_{(i,j)}, m^i_{(i,j)}, \Delta m_{(i,j)})$$

• Different permeabilities

Low permeability vs. High permeability

CASA 2013

Mass change
 Surface layer: cyan
 Interior layer: magenta

High-permeability: dotted Low-permeability: solid

CASA 2013

• Diffusion: interior

$$\frac{\partial S}{\partial t} = \nabla \cdot (D\nabla S) \qquad \qquad D(\epsilon_l) = \frac{3\sigma \cos \Phi \sin^2 \beta \, d_c \epsilon_l}{20\eta \epsilon}$$

- ϵ_l : fraction of the cell volume occupied by water
- β : average angle between the capillaries and the surface of the object
- Solve numerically...

- Reference to the state variables
 - Mass density: $\rho_{(i,j)}$
 - Saturation degree: $S_{(i,j)}$

Changes in Material Properties

• Mass: porous material + water

$$M_{(i,j)} = \left(\rho_o(1-\epsilon) + \rho_w \epsilon S_{(i,j)} + \rho_{(i,j)}\right) V$$

- *ρ_o*: density of the porous material*V*: volume of a cell
- Stiffness
 - Stretching
 - Bending

 $k_s' = (k_{min} - k_s)\sqrt{S_e} + k_s$

• Effects of changes in mass and stiffness

- Tearing
 - Stretch ratio limit: ε

 $\varepsilon' = \max(\varepsilon - \alpha(S_e)^{\gamma}, \varepsilon_{min})$

CASA 2013

Discontinuity after tearing

• Comparison of tearing effects

Experiment

- System
 - Intel Core i5-2500K 3.30GHz CPU
 - 8GB memory
- Fluid
 - CFL: 1
 - 512 x 512
- Deformable shells

 4K vertices and 8K polygons
- Simulation time
 - 3~4 sec./frame

Conclusion and Future Work

- Simulation
 - Dynamics of deformable shells (with PBD)
 - Surface water flow
 - Capillary flow involving absorption and diffusion of water
- Future work
 - Various full 3D effects: squeezing, sinking, dissolving, evaporation, condensation, etc.

Thank you